
Distilling distributed system specifications with Large

Language Models

Mike He
Princeton University

Zhendong Ang
National University of Singapore

Ankush Desai
Amazon Web Services

Aarti Gupta
Princeton University

Abstract

Formal specifications are critical for reasoning about the
correctness of distributed systems and for enabling runtime
monitoring. While recent advances have focused on auto-
matically learning such specifications, the challenge of dis-
tilling meaningful and non-trivial specifications from a large,
noisy set of candidates remains largely unaddressed. In this
position paper, we propose an approach for specification
distillation: identifying the most critical specifications that
merit the overall system correctness.We design a four-metric
rating framework that quantifies importance of system spec-
ifications to the underlying distributed system and leverages
the reasoning capabilities of Large Language Models to rank
learned specifications following our rating framework. We
conducted preliminary experiment on distilling specifica-
tions learned by PInfer for 11 open-source and 3 proprietary
benchmarks to demonstrate effectiveness of our approach.

1 Introduction

Modern distributed systems operate at massive scales, co-
ordinating thousands of nodes across global infrastructures
while maintaining various consistency guarantees. The cor-
rectness of these systems hinges on their adherence to formal
specifications that define desired system behaviors and ex-
clude behaviors that lead to errors. Yet, through our extensive
experience using the P modeling framework to guarantee
industrial-strength distributed services at AnonCompany1,
the traditional approach of manually developing these speci-
fications has become a bottleneck in the development pro-
cess, consuming significant engineering effort. Many prior
efforts attempted to address this challenge by analyzing exe-
cution traces or actively monitoring system states to auto-
matically learn specifications [3, 6, 14].
While these techniques alleviate the developers’ burden

of formalizing correctness, their applicability for large-scale,
complex distributed systems are hindered by learning an un-
reasonably large number of specifications. The data-driven
approaches adopted by these frameworks often rely on search-
ing and learning with a grammar [3, 6, 14] that creates an

1Name elided for anonymity

exponentially large search space including many trivial spec-
ifications. For instance, without suitable user intervention,
Dinv [6] learns a million of properties for Raft [11]. A re-
cent work, PInfer [3], alleviates this issue by focusing on
a more restricted grammar and using logic-based pruning
procedures to remove redundant specifications subsumed
by others. It additionally utilizes a model-checking-based
fuzzer [4] to falsify the learned specifications with a P [5]
model. Despite these efforts, PInfer still learns hundreds
of specifications for complex systems. Working with these
tools then transforms the burden from formalizing correct-
ness to identifying “critical” correctness specifications that
benefit downstream tasks (e.g., verification) from large sets
of learned specifications. We refer to this challenge as the
specification distillation problem.
1.1 Challenges and Our solution

We propose to address the specification distillation prob-
lem leveraging the reasoning capabilities of Large Language
Models (LLMs). Specifically, we identify two key challenges
in this problem:
Challenge (C1): “Criticalness” of specifications does not
have a formal definition. Even the informal statements about
criticalness vary across contexts. For instance, for consensus
protocols such as Paxos [9], the uniqueness of decisions is
critical, whereas various database systems concern more
about atomicity and consistency.
Challenge (C2): Distilling specifications requires expertise
of the system design and its intended behaviors. This can be
a burden for the user or require specialized analysis tools.
To address (C1), we propose a four-metric rating frame-

work that measures criticalness of specifications along their
generalizability, criticality, distinguishability, and visibility.
These metrics capture different aspects of specification im-
portance, from universal applicability to user-facing impact.
Note that these metrics are extensible and can be customized.
To address (C2), we leverage LLM agents to analyze system
implementations and apply our rating framework to rank
specifications. We conducted preliminary experiments on
distilling specifications learned by PInfer for 11 open-source
and 3 proprietary benchmarks. Our results show that using
our technique with a state-of-the-art LLM, all specifications

1



identified by developers are found in top-10 distilled candi-
dates in 8 out of 14 benchmarks. Additionally, we identify
critical properties of proprietary protocols overlooked by
the developers.

2 Background

2.1 P language and modeling framework

P [4, 5] is a state-machine-based programming language
for formal modeling and analysis of distributed systems. A
P program comprises state machines communicating asyn-
chronously with each other using events comprised of typed
data values. The machines run concurrently, receiving and
sending events and updating the local states.
Example: Simple Client-Server Protocol. To illustrate the
main concepts in a P model, consider a simple client-server
protocol, where the client sends a request to the server, and
then the server sends back a response. The P model is shown
in Figure 1. In this model, the Request and Response decla-
rations (lines 2-3) specify the names and payload types of the
events. For instance, the payload of Request has a reference
to the client and a request ID. Each state machine (lines 5, 23)
has associated states (lines 8, 16, 24) and local variables (lines
6, 7). A state may have an entry function (line 9) executed
upon entry. After executing the entry function, the machine
tries to dequeue from its event buffer and execute the corre-
sponding event handler. For instance, in WaitResponse state,
the machine has a handler for Response (line 17). Machines
can communicate using send (line 12, 26) and change its
state using goto (line 13).

An explorer tool PChecker [4] can execute the model and
record event traces capturing all message exchanges between
machines. These event traces serve as input to PInfer for
specification learning.
2.2 PInfer: learning specifications from event traces

PInfer [3] is a framework that learns specifications of dis-
tributed systems from event traces. Given event traces recorded
by PChecker, PInfer automatically discovers specifications
encoded as first-order logic formulas over events that char-
acterize system behavior. Specifically, PInfer uses the fol-
lowing formula template to guide specification learning:

𝜙 : (∀®𝑒𝑖 )+. 𝐺 (®𝑒𝑖 ) → (∃®𝑒 𝑗 )∗ .𝑊 (®𝑒𝑖 , ®𝑒 𝑗 ) ∧ 𝐻 (®𝑒𝑖 , ®𝑒 𝑗 ) (1)

where𝐺 are guards stating control conditions of occurrence
of events ®𝑒𝑖 ,𝑊 arewitnesses that express existence of a certain
event ®𝑒 𝑗 , and 𝐻 are hypotheses that hold under 𝐺 and𝑊 .

Specification Learning Example. For the example above,
PInfer learns specifications such as the following.We denote
a Request as R and a Response as S.

∀𝑒0 : S. ∃𝑒1 : R . 𝑒1 ≺ 𝑒0 ∧ 𝑒0.reqId = 𝑒1.reqId (2)
∀𝑒0, 𝑒1 : S. 𝑒0.reqId = 𝑒1.reqId → 𝑒0 = 𝑒1 (3)
∀𝑒0 : R, 𝑒1 : S. 𝑒0.reqId = 𝑒1 .reqId → 𝑒0 ≺ 𝑒1 (4)

Figure 1. Simple Client-Server protocol in P
1 # Event declarations with payload types
2 event Request: (clt: Client , reqId: int);
3 event Response: (reqId: int);
4 # Client state machine
5 machine Client {
6 var server: Server;
7 var rid: int;
8 start state SendRequest {
9 entry (srv: Server) {
10 server = srv;
11 rid = randomId ();
12 send server , Request , (clt=this , reqId=rid);
13 goto WaitResponse;
14 }
15 }
16 state WaitResponse {
17 on Response do (payload: (reqId: int)) {
18 assert(payload.reqId == this.rid);
19 }
20 }
21 }
22 # Server state machine
23 machine Server {
24 start state Serving {
25 on Request do (req: (clt: Client , reqId: int)) {
26 send req.clt , Response , (reqId=req.reqId);
27 }
28 }
29 }

These specifications capture the following properties:
Eqn 2: Every response corresponds to a prior request, where
≺ denotes the traditional happens-before [8] relation.
Eqn 3: Responses are unique per request ID
Eqn 4: Requests always happen before responses

For more complex protocols, the formula template (Eqn 1)
can create larger search spaces, which may lead PInfer to
learn hundreds of specifications from event traces. We aim
to distill these learned specifications to a smaller subset.

3 Distillation with LLMs

Distillation problem has mainly two challenges: first, the
importance of specifications is not quantitatively defined;
second, understanding the specifications requires expertise
about the protocol design. To address challenge 1, we in-
troduce a four-metric rating framework that evaluates the
contribution of each specification to system correctness. For
challenge 2, we design a distillation workflow that incorpo-
rates our rating framework and leverages the LLMs to rank
specifications based on the ratings.
Figure 2 illustrates our workflow. We first use a Summa-

rization agent to analyze the P model and extract event,
state machine definitions, and event flows betweenmachines.
Then, we provide the Ranking agent with the learned spec-
ifications, a detailed explanation of our rating framework
with illustrative examples, and the analysis of the P model
to set up the domain context. The Ranking agent is then
prompted to evaluate the specifications following our rating
framework and rank them based on the ratings. The set of
specifications can be distilled through an iterative process
until satisfying user-provided constraints (e.g., number of
specifications, minimum or average rating threshold).

2



Figure 2. LLM-based specification distillation workflow.
Learned

specifications

P Model

Ranking Agent
Four-metric

rating criteria
Four-metric

Ratings
Distilled

specifications

Iterative Refinement Informalization

Formal
verification

Runtime
monitors

Summarization Agent

3.1 Four-Metric Rating Framework

Our rating framework evaluates each specification 𝜙 along
four dimensions, producing scores in the range [0.0, 1.0] for
each metric. The four metrics are derived from intuitions
that good specifications should be generalizable across differ-
ent configurable parameters, capturing correctness properties
and rejecting undesired behaviors of the system. For example,
different system configurations may involve different num-
ber of nodes, network topologies, or workload patterns (e.g.,
read-heavy, write-heavy, etc.). Additionally, the specifica-
tions will be more debuggable if they directly affect outputs
that are visible to the end user. Table 1 provides some rating
examples for each metric on specifications learned for the
Two-Phase Commit [7] protocol.
Generalization Score𝐺 (𝜙). The generalization score𝐺 (𝜙)
reflects the likelihood that a specification represents a system
invariant that holds across all valid executions, independent
of system configuration or implementation. Generalization
score distinguishes between specifications that capture gen-
eral correctness properties versus those overfitting to specific
configurations. Examples are shown in Table 1 (𝐺 (𝜙) row).
Criticality Score𝐶 (𝜙). The criticality score𝐶 (𝜙) evaluates
the severity of consequences when a specification is violated,
measuring the blast radius of potential failures and their
impact on system correctness and recoverability. This met-
ric captures whether the violation of a specification would
cascade into system-wide failures or remain localized. Specifi-
cations with high criticality scores protect against violations
that result in unrecoverable system states or compromise
essential safety properties. The 𝐶 (𝜙) row of Table 1 shows
examples for this metric.
Distinguishability Score𝐷 (𝜙).The distinguishability score
𝐷 (𝜙) measures how effectively a specification serves as a
separator that differentiates between correct and incorrect
system behaviors. Specifications with high distinguishability
should be strong enough to exclude erroneous behaviors,
while weak enough to apply to all correct behaviors. Exam-
ples are shown in the 𝐷 (𝜙) row of Table 1.
Visibility Score 𝑉 (𝜙). The visibility score 𝑉 (𝜙) measures
how directly a specification’s properties are observable by
end users or system operators. We focus on specifications de-
fined over events observed during system execution, where
events can be either observable to the user of the system

Figure 3. Preliminary results: columns show the numbers
of specifications in the target set included after distillation to
top-k candidates. The total number of specifications learned
by PInfer is shown along with benchmark names. The top
11 rows are benchmarks with open-source protocols.

k=10 k=20 k=30 k=40 k=50

2Pc (46) 2/2 2/2 2/2 2/2 2/2

Chainreplication (33) 3/5 5/5 5/5 5/5 5/5

Raft (56) 5/5 5/5 5/5 5/5 5/5

Consensus (28) 1/1 1/1 1/1 1/1 1/1

Distributed Lock (76) 1/1 1/1 1/1 1/1 1/1

Firewall (40) 1/1 1/1 1/1 1/1 1/1

Lockserver (35) 1/1 1/1 1/1 1/1 1/1

Paxos (46) 1/2 2/2 2/2 2/2 2/2

Ring Leader (27) 1/1 1/1 1/1 1/1 1/1

Sharded Kv (19) 1/1 1/1 1/1 1/1 1/1

Vertical Paxos (94) 1/2 2/2 2/2 2/2 2/2

Globalclock (37) 2/3 3/3 3/3 3/3 3/3

Dbleaderelection (47) 3/5 3/5 3/5 4/5 5/5

Mvcc-2Pc (241) 2/10 3/10 6/10 7/10 8/10

Spec Included % 62.5% 77.5% 85.0% 90.0% 95.0%

Pruned % 83.0% 66.2% 51.0% 39.5% 32.4%

(e.g., responses) or internal to the system (e.g., cluster re-
configuration). High visibility score indicates that the viola-
tion of the specification is “closer” to the interface between
the system and its users, making it easier to detect and debug.
Some examples are shown in the 𝑉 (𝜙) row of Table 1.
Overall Rating and Ranking. Given the metric scores
𝐺 (𝜙),𝐶 (𝜙), 𝐷 (𝜙), and𝑉 (𝜙) for a specification 𝜙 , the overall
score 𝑆 (𝜙) is computed as:

𝑆 (𝜙) = 𝜆1 ·
√︁
𝐺 (𝜙) ·𝐶 (𝜙) + 𝜆2 · 𝐷 (𝜙) + 𝜆3 ·𝑉 (𝜙)

where 𝜆𝑖 are hyper-parameters such that
∑

𝑖 𝜆𝑖 = 1. In par-
ticular,

√︁
𝐺 (𝜙) ·𝐶 (𝜙) is a quality term ensuring that speci-

fications with high generalization but low criticality (vice
versa) do not dominate the ranking. The distinguishability
and visibility scores are added linearly, allowing them to con-
tribute to the overall score without overpowering the quality
term (controlled via 𝜆2, 𝜆3). The Ranking agent is prompted
to follow the rating framework and provide the top-k rated
specifications. The 𝑘 value can be decreased iteratively until
the user is satisfied with the final result.

3



Table 1. Example ratings for each metric. each shows the specification formula on the first line. The rating and justification
are shown on the second line. 𝑒𝑊𝑟𝑖𝑡𝑒𝑆𝑢𝑐𝑐𝑒𝑠𝑠 and 𝑒𝑊𝑟𝑖𝑡𝑒𝐹𝑎𝑖𝑙𝑢𝑟𝑒 are events sent back to the users.

Metrics Rating examples in System Prompt

∀𝑒0 : 𝑒𝐴𝑏𝑜𝑟𝑡 .∀𝑒1 : 𝑒𝐶𝑜𝑚𝑚𝑖𝑡 . 𝑒0 .𝑖𝑑 ≠ 𝑒1 .𝑖𝑑

1: Universally true - abort and commit never occur for the same transaction in ANY execution.
∀𝑒0 : 𝑒𝐶𝑜𝑚𝑚𝑖𝑡 . ∃𝑒1 : 𝑒𝑃𝑟𝑒𝑝𝑎𝑟𝑒𝑆𝑢𝑐𝑐𝑒𝑠𝑠. 𝑒1 ≺ 𝑒0 ∧ 𝑒0 .𝑖𝑑 = 𝑒1.𝑖𝑑 ∧ 𝑒0.𝑣𝑜𝑡𝑒𝑟 ≠ 𝑒1.𝑣𝑜𝑡𝑒𝑟

0.5: Generally true but may not hold in single-node deployments.𝐺 (𝜙)

∀𝑒0 : 𝑒𝑃𝑟𝑒𝑝𝑎𝑟𝑒𝑅𝑒𝑞. ∃𝑒1 : 𝑒𝑃𝑟𝑒𝑝𝑎𝑟𝑒𝐹𝑎𝑖𝑙𝑢𝑟𝑒. 𝑒0 ≺ 𝑒1
0: Not generalizable to traces with no failed transaction.
∀𝑒0 : 𝑒𝐴𝑏𝑜𝑟𝑡 .∀𝑒1 : 𝑒𝐶𝑜𝑚𝑚𝑖𝑡 . 𝑒0 .𝑖𝑑 ≠ 𝑒1 .𝑖𝑑

1: Violation leads to data corruption requiring manual rollback.
∀𝑒0 : 𝑒𝐶𝑜𝑚𝑚𝑖𝑡 .∀𝑒1 : 𝑒𝐶𝑜𝑚𝑚𝑖𝑡 . 𝑒0.𝑖𝑑 = 𝑒1.𝑖𝑑 → 𝑒0 = 𝑒1
0.5: Moderately critical - duplicate commits cause inconsistency but may be detectable and recoverable.𝐶 (𝜙)

∀𝑒0 : 𝑒𝑃𝑟𝑒𝑝𝑎𝑟𝑒𝑆𝑢𝑐𝑐𝑒𝑠𝑠. ∃𝑒1 : 𝑒𝑃𝑟𝑒𝑝𝑎𝑟𝑒𝑅𝑒𝑞. 𝑒1 ≺ 𝑒0
0: Non-critical: the opposite (𝑒0 ≺ 𝑒1) may also be true for multiple transactions.
∀𝑒0 : 𝑒𝐶𝑜𝑚𝑚𝑖𝑡 . ∃𝑛𝑒1 : 𝑒𝑃𝑟𝑒𝑝𝑎𝑟𝑒𝑆𝑢𝑐𝑐𝑒𝑠𝑠. 𝑒1 ≺ 𝑒0 ∧ 𝑒0.𝑖𝑑 = 𝑒1 .𝑖𝑑

1: Rejects all executions with incomplete prepare successes.
∀𝑒0 : 𝑒𝐶𝑜𝑚𝑚𝑖𝑡 . ∃𝑒1 : 𝑒𝑃𝑟𝑒𝑝𝑎𝑟𝑒𝑅𝑒𝑞. 𝑒1 ≺ 𝑒0 ∧ 𝑒0.𝑖𝑑 = 𝑒1.𝑖𝑑

0.6: Catches commits without prepare requests but misses commits with failed prepares.𝐷 (𝜙)

∀𝑒0 : 𝑒𝐴𝑏𝑜𝑟𝑡 . ∃𝑒1 : 𝑒𝑃𝑟𝑒𝑝𝑎𝑟𝑒𝐹𝑎𝑖𝑙𝑢𝑟𝑒. 𝑒0 .𝑖𝑑 = 𝑒1.𝑖𝑑

0.3: Not strong ePrepareFailureugh to reject executions where the prepare failure happens after the eAbort.
∀𝑒0 : 𝑒𝑊𝑟𝑖𝑡𝑒𝑆𝑢𝑐𝑐𝑒𝑠𝑠.∀𝑒1 : 𝑒𝑊𝑟𝑖𝑡𝑒𝐹𝑎𝑖𝑙𝑢𝑟𝑒. 𝑒0.𝑖𝑑 ≠ 𝑒1 .𝑖𝑑

1: Operator immediately notices contradictory transaction outcomes.
∀𝑒0 : 𝑒𝐴𝑏𝑜𝑟𝑡 . ∃𝑒1 : 𝑒𝑊𝑟𝑖𝑡𝑒𝐹𝑎𝑖𝑙𝑢𝑟𝑒. 𝑒0.𝑖𝑑 = 𝑒1 .𝑖𝑑

0.5: Abort and Commit can trigger user-visible events.𝑉 (𝜙)

∀𝑒0 : 𝑒𝐶𝑜𝑚𝑚𝑖𝑡 . ∃𝑒1 : 𝑒𝑃𝑟𝑒𝑝𝑎𝑟𝑒𝑅𝑒𝑞. 𝑒1 ≺ 𝑒0 ∧ 𝑒0.𝑖𝑑 = 𝑒1.𝑖𝑑

0.1: Internal protocol ordering not directly visible to application users.

4 Preliminary Experiments

We have conducted preliminary experiments to evaluate the
effectiveness of our approach. We use the state-of-the-art
Claude Sonnet 4 [1] for creating Summarization and Ranking
agents. We applied our approach to 11 well-known open-
source protocols (including Raft [11], Paxos [9], and Chain
Replication [13], etc.) and 3 proprietary protocols written
in P [4] language. We construct the target specification set
(43 in total) identified by prior literature [2, 9–11] for open-
source protocols and specifications composed by develop-
ment teams for proprietary protocols. We use PInfer [3] to
learn specifications as inputs to the distillation process. In
this experiment, we set the weights to 𝜆1 = 0.8, 𝜆2 = 0.1 and
𝜆3 = 0.1 to favor specifications with higher quality terms.
Our results are shown in Figure 3. Notably, all specifica-

tions of 8 of the 14 benchmarks are identified after distilling
to only 10 top-rated candidates. The last two columns shows
the percentage of target specifications included and specifi-
cations pruned. We also analyzed specifications that were
not in our target set but ranked higher by the LLM.We found
that these specifications fall into two main categories: (1)
specifications that can be expressed by relations between
other events, and (2) critical specifications missing from the
target set. The first category is less interesting since they can

be derived from the known specifications with domain exper-
tise. On the other hand, the second category is more valuable,
as it highlights critical specifications that developers may
have overlooked. For instance, the top-ranked specification
for the proprietary MVCC-2PC protocol ensures that users
do not observe inconsistent transaction status between the
leader server and shard servers. While this specification was
not in the target set identified by the protocol developers,
it represents a crucial correctness property for the protocol.
This demonstrates a key benefit of our approach: it can help
developers discover important specifications that they may
have missed during development. Upon validation of such
specifications, developers can strengthen protocol specifica-
tion sets with these properties.

5 Future work

Improving accuracywithReinforcement Learning.Cur-
rently, we hard-code the weights (𝜆𝑖 ) to compute overall
ratings. In future work, we would like to consider using
Reinforcement Learning or Reinforcement Learning with

4



Human Feedback [12] to dynamically adjust the weights to
better adapt to different protocols.
Towards an automated verification framework.We plan
to incorporate our workflow into a broader automated ver-
ification framework. In this framework, given a P model
and a set of traces, PInfer learns automatically a set of
specifications. Then, the distillation process chooses critical
specifications that should be further verified with a down-
stream verifier (e.g., PVerifier [4, 10]). Our rating framework
is general and extensible, and we can incorporate additional
metrics such as inductiveness of specifications to facilitate
the verification process.

References

[1] Claude Sonnet 4 — anthropic.com. https://www.anthropic.com/claude/
sonnet. [Accessed 07-07-2025].

[2] GitHub - GLaDOS-Michigan/I4: The code base for the I4 prototype, as
described in the SOSP ’19 paper "I4: Incremental Inference of Inductive
Invariants for Verification of Distributed Protocols" — github.com.
https://github.com/GLaDOS-Michigan/I4. [Accessed 11-04-2025].

[3] GitHub - p-org/P at experimental/pinfer — github.com. https://github.
com/p-org/P/tree/experimental/pinfer. [Accessed 07-07-2025].

[4] GitHub - p-org/P: The P programming language. — github.com. https:
//github.com/p-org/P. [Accessed 18-03-2025].

[5] Ankush Desai, Vivek Gupta, Ethan Jackson, Shaz Qadeer, Sriram Ra-
jamani, and Damien Zufferey. P: safe asynchronous event-driven
programming. In Proceedings of the 34th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’13, page
321–332, New York, NY, USA, 2013. Association for Computing Ma-
chinery.

[6] Stewart Grant, Hendrik Cech, and Ivan Beschastnikh. Inferring and
asserting distributed system invariants. In Proceedings of the 40th Inter-
national Conference on Software Engineering, ICSE ’18, page 1149–1159,
New York, NY, USA, 2018. Association for Computing Machinery.

[7] Jim Gray. The transaction concept: virtues and limitations, page 140–150.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1988.

[8] Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Commun. ACM, 21(7):558–565, July 1978.

[9] Leslie Lamport. The part-time parliament. ACM Trans. Comput. Syst.,
16(2):133–169, May 1998.

[10] Federico Mora, Ankush Desai, Elizabeth Polgreen, and Sanjit A. Seshia.
Message chains for distributed system verification. Proc. ACM Program.
Lang., 7(OOPSLA2), October 2023.

[11] Diego Ongaro and John Ousterhout. In search of an understandable
consensus algorithm. In 2014 USENIX Annual Technical Conference
(USENIX ATC 14), pages 305–319, Philadelphia, PA, June 2014. USENIX
Association.

[12] LongOuyang, JeffWu, Xu Jiang, DiogoAlmeida, Carroll L.Wainwright,
Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama,
Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan
Leike, and Ryan Lowe. Training languagemodels to follow instructions
with human feedback, 2022.

[13] Robbert van Renesse and Fred B. Schneider. Chain replication for
supporting high throughput and availability. In Proceedings of the 6th
Conference on Symposium on Operating Systems Design & Implementa-
tion - Volume 6, OSDI’04, page 7, USA, 2004. USENIX Association.

[14] Yuan Xia, Deepayan Sur, Aabha Shailesh Pingle, Jyotirmoy V. Desh-
mukh, Mukund Raghothaman, and Srivatsan Ravi. Discovering

likely invariants for distributed systems through runtime monitor-
ing and learning. In Krishna Shankaranarayanan, Sriram Sankara-
narayanan, and Ashutosh Trivedi, editors, Verification, Model Checking,
and Abstract Interpretation, pages 3–25, Cham, 2025. Springer Nature
Switzerland.

5

https://www.anthropic.com/claude/sonnet
https://www.anthropic.com/claude/sonnet
https://github.com/GLaDOS-Michigan/I4
https://github.com/p-org/P/tree/experimental/pinfer
https://github.com/p-org/P/tree/experimental/pinfer
https://github.com/p-org/P
https://github.com/p-org/P

	Abstract
	1 Introduction
	1.1 Challenges and Our solution

	2 Background
	2.1 P language and modeling framework
	2.2 PInfer: learning specifications from event traces

	3 Distillation with LLMs
	3.1 Four-Metric Rating Framework

	4 Preliminary Experiments
	5 Future work
	References

