Equality Saturation:
Term Extraction and an Application to Network Synthesis

General Exam: Deyuan (Mike) He
April 17, 2024

Examination Committee
Prof.Aarti Gupta (Advisor) Prof.Andrew Appel Prof.Mae Milano

Outline

1. Brief introduction to equality saturation
2. Term Extraction for equality saturation (Part A)
3. Applying equality saturation for network resource synthesis (Part B)

4. (If time permits) Ongoing project of invariant synthesis for distributed systems

Compiler optimizations are hard to design

Vectorize loop

Load store
forwardin
Constant folding S

Compiler optimizations are hard to design

| Load store
Vectorize loop forwarding

Constant folding

Vectorize loop

Constant folding Constant folding

Load store
forwarding

Code motion Vectorize loop

Load store
forwarding

Which order to choose?
Phase Ordering Problem

GCC's passes.def

* Description of pass structure
Copyright (C) 1987-2024 Free Software Foundatis

his file is part of GCC.

CC is free software; you can redistribute it and/or modify it under
he terms of the GNU General Public License as published by the Free
Foftware Foundation; either version 3, or (at your option) any later
ersion.

CC is distributed in the hope that it will be useful, but WITHOUT ANY
JARRANTY; without even the implied warranty of MERCHANTABILITY or
ITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
or more details.

ou should have received a copy of the GNU General Public License
plong with GCC; see the file COPYING3. If not see
http://www.gnu.org/licenses/>. */

*
Macros that should be defined when using this file:
INSERT_PASSES_AFTER (PASS)
PUSH_INSERT_PASSES_WITHIN (PASS)
POP_INSERT_PASSES ()
NEXT_PASS (PASS)
TERMINATE_PASS_LIST (PASS)
*/

/* ALl passes needed to lower the function into shape optimizers can
operate on. These passes are always run first on the function, but
backend might produce already lowered functions that are not processed
by these passes. %/

INSERT_PASSES_AFTER (all_lowering_passes)
NEXT_PASS (pass_warn_unused_result);
NEXT_PASS (pass_diagnose_omp_blocks);
NEXT_PASS (pass_diagnose_tm_blocks);
NEXT_PASS (pass_omp_oacc_kernels_decompose);
NEXT_PASS (pass_lower_omp);

NEXT_PASS (pass_lower_cf);

NEXT_PASS (pass_lower_tm);

NEXT_PASS (pass_refactor_eh);

NEXT_PASS (pass_lower_eh);

NEXT_PASS (pass_coroutine_lower_builtins);
NEXT_PASS (pass_build_cfg);

NEXT_PASS (pass_warn_function_return
NEXT_PASS (pass_coroutine_early_expand_ifns);
NEXT_PASS (pass_expand_omp);

NEXT_PASS (pass_build_cgraph_edges);
TERMINATE_PASS_LIST (all_lowering_passes)

/* Interprocedural optimization passes. %/
INSERT_PASSES_AFTER (all_small_ipa_passes)
NEXT_PASS (pass_ipa_free_lang_data);
NEXT_PASS (pass_ipa_function_and_variable_visibility);
NEXT_PASS (pass_ipa_strub_mode);
NEXT_PASS (pass_build_ssa_passes);
PUSH_INSERT_PASSES_WITHIN (pass_build_ssa_passes)
NEXT_PASS (pass_fixup_cfg);
NEXT_PASS (pass_build_ssa
NEXT_PASS (pass_walloca, /#strict_mode_p=+/true);
NEXT_PASS (pass_warn_printf);
NEXT_PASS (pass_warn_nonnull_compare);
NEXT_PASS (pass_early_warn_uninitialized);
NEXT_PASS (pass_warn_access, /xearly=x/true);
NEXT_PASS (pass_ubsan);
NEXT_PASS (pass_nothrow);
NEXT_PASS (pass_rebuild_cgraph_edges);
POP_INSERT_PASSES ()

NEXT_PASS (pass_local_optimization_passes);
PUSH_INSERT_PASSES_WITHIN (pass_local_optimization_passes)
NEXT_PASS (pass_fixup_cfg);
NEXT_PASS (pass_rebuild_cgraph_edges);
NEXT_PASS (pass_local_fn_summary);
NEXT_PASS (pass_early_inline);
NEXT_PASS (pass_warn_recursion);
NEXT_PASS (pass_all_early_optimizations);
PUSH_INSERT_PASSES_WITHIN (pass_all_early_optimizations)
NEXT_PASS (pass_remove_cgraph_callee_edges);
NEXT_PASS (pass_early_object_sizes);
/% Don't record nonzero bits before IPA to avoid
using too much memory. */
NEXT_PASS (pass_ccp, false /* nonzero_p */);
/* After CCP we rewrite no longer addressed locals into SSA
form if possible. %/
NEXT_PASS (pass_forwprop);
NEXT_PASS (pass_early_thread_jumps, /*first=+/true);
NEXT_PASS (pass_sra_early);
/* pass_build_ealias is a dummy pass that ensures that we
execute TODO_rebuild_alias at this point. */
NEXT_PASS (pass_build_ealias);
/* Do phiprop before FRE so we optimize std::min and std::max well.
NEXT_PASS (pass_phiprop);
NEXT_PASS (pass_fre, true /% may_iterate */);
NEXT_PASS (pass_early_vrp);
NEXT_PASS (pass_merge_phi);
NEXT_PASS (pass_dse);
NEXT_PASS (pass_cd_dce, false /x update_address_taken_p */);
NEXT_PASS (pass_phiopt, true /x early_p */);
NEXT_PASS (pass_tail_recursion);
NEXT_PASS (pass_if_to_switch);
NEXT_PASS (pass_convert_switch);
NEXT_PASS (pass_cleanup_eh);
NEXT_PASS (pass_sccopy
NEXT_PASS (pass_profile);
NEXT_PASS (pass_local_pure_const);
NEXT_PASS (pass_modref);
/* Split functions creates parts that are not run through
early optimizations again. It is thus good idea to do this
late. */
NEXT_PASS (pass_split_functions);
NEXT_PASS (pass_strip_predict_hints, true /* early_p */);
POP_INSERT_PASSES ()
NEXT_PASS (pass_release_ssa_names);
NEXT_PASS (pass_rebuild_cgraph_edges);
NEXT_PASS (pass_local_fn_summary);
POP_INSERT_PASSES ()

NEXT_PASS (pass_ipa_remove_symbols);
NEXT_PASS (pass_ipa_strub);

INSERT_PASSES_AFTER (all_regular_ipa_passes)

NEXT_PASS (pass_analyzer)

NEXT_PASS (pass_ipa_odr);

NEXT_PASS (pass_ipa_whole_program_visibility);

NEXT_PASS (pass_ipa_profile);

NEXT_PASS (pass,

NEXT_PASS (pass. _f

NEXT_PASS (pass_ipa_cp);

NEXT_PASS (pass_ipa_sra);

NEXT_PASS (pass_ipa_cdtor_merge);

NEXT_PASS (pass_ipa_fn_summary);

NEXT_PASS (pass_ipa_inline);

NEXT_PASS (pass_ipa_pure_const);

NEXT_PASS (pass_ipa_modref);

NEXT_PASS (pass_ipa_free_fn_summary, false /* small_p */);

NEXT_PASS (pass_ipa_reference);

/* This pass needs to be scheduled after any IP code duplication. */

NEXT_PASS (pass_ipa_single_use);

/* Comdat privatization come last, as direct references to comdat local
symbols are not allowed outside of the comdat group. Privatizing early
would result in missed optimizations due to this restriction. =/

NEXT_PASS (pass_ipa_comdats);

TERMINATE_PASS_LIST (all_regular_ipa_passes)

/* Simple IPA passes executed after the regular passes. In WHOPR mode the
passes are executed after partitioning and thus see just parts of the
compiled unit. %/

INSERT_PASSES_AFTER (all_late_ipa_passes)

NEXT_PASS (pass_ipa_pta);

NEXT_PASS (pass_omp_simd_clone);

TERMINATE_PASS_LIST (all_late_ipa_passes)

/* These passes are run after IPA passes on every function that is being
output to the assembler file. %/

INSERT_PASSES_AFTER (all_passes)

NEXT_PASS (pass_fixup_cfg);

NEXT_PASS (pass_lower_eh_dispatch);

NEXT_PASS (pass_oacc_loop_designation);

NEXT_PASS (pass_omp_oacc_neuter_broadcast);

NEXT_PASS (pass_oacc_device_lower);

NEXT_PASS (pass_omp_device_lower);

NEXT_PASS (pass_omp_target_link);

NEXT_PASS (pass_adjust_alignment);

NEXT_PASS (pass_harden_control_flow_redundancy);

NEXT_PASS (pass_all_optimizations);

PUSH_INSERT_PASSES_WITHIN (pass_all_optimizations)

NEXT_PASS (pass_remove_cgraph_callee_edges);

/* Initial scalar cleanups before alias computation.

They ensure memory accesses are not indirect wherever possible. x/

NEXT_PASS (pass_strip_predict_hints, false /x early_p */

NEXT_PASS (pass_ccp, true /% nonzero_p */);

/* After CCP we rewrite no longer addressed locals into SSA
form if possible. %/

NEXT_PASS (pass_object_sizes);

NEXT_PASS (pass_post_ipa_warn);

/* Must run before loop unrolling. */

NEXT_PASS (pass_warn_access, /xearly=x/true);

/* Profile count may overflow as a result of inlinining very large
loop nests. This pass should run before any late pass that makes
use of profile. */

NEXT_PASS (pass_rebuild_frequencies);

NEXT_PASS (pass_complete_unrolli);

NEXT_PASS (pass_backprop)

NEXT_PASS (pass_phiprop

NEXT_PASS (pass_forwprop);

/* pass_build_alias is a dummy pass that ensures that we
execute TODO_rebuild_alias at this point. x/

NEXT_PASS (pass_build_alias);

NEXT_PASS (pass_return_slot);

NEXT_PASS (pass_fre, true /% may_iterate */);

NEXT_PASS (pass_merge_phi);

NEXT_PASS (pass_thread_jumps_full, /*firs

NEXT_PASS (pass_vrp, false /x final_p%/);

NEXT_PASS (pass_dse);

NEXT_PASS (pass_dce);

/* pass_stdarg is always run and at this point we execute
TODO_remove_unused_locals to prune CLOBBERs of dead
variables which are otherwise a churn on alias walkings. */

NEXT_PASS (pass_stdarg);

NEXT_PASS (pass_call_cdce);

NEXT_PASS (pass_cselim);

NEXT_PASS (pass_copy_prop);

NEXT_PASS (pass_tree_ifcombine);

NEXT_PASS (pass_merge_phi);

NEXT_PASS (pass_phiopt, false /* early_p */);

NEXT_PASS (pass_tail_recursion);

NEXT_PASS (pass_ch);

NEXT_PASS (pass_lower_complex);

NEXT_PASS (pass_lower_bitint);

NEXT_PASS (pass_sra);

/* The dom pass will also resolve all __builtin_constant_p calls
that are still there to @. This has to be done after some
propagations have already run, but before some more dead code
is removed, and this place fits nicely. Remember this when
trying to move or duplicate pass_dominator somewhere earlier. */

NEXT_PASS (pass_thread_jumps, /*first=+/true);

NEXT_PASS (pass_dominator, true /% may_peel_loop_headers_p */);

/* Threading can leave many const/copy propagations in the I
Clean them up. Failure to do so well can lead to false
positives from warnings for erroneous code. */

NEXT_PASS (pass_copy_prop);

/* Identify paths that should never be executed in a conforming
program and isolate those paths. */

NEXT_PASS (pass_isolate_erroneous_paths);

NEXT_PASS (pass_reassoc, true /* early_p */);

NEXT_PASS (pass_dce);

NEXT_PASS (pass_forwprop);

NEXT_PASS (pass_phiopt, false /% early_p */);

NEXT_PASS (pass_ccp, true /* nonzero_p */);

/* After CCP we rewrite no longer addressed locals into SSA
form if possible. */

NEXT_PASS (pass_expand_powcabs);

NEXT_PASS (pass_optimize_bswap);

NEXT_PASS (pass_laddress);

NEXT_PASS (pass_lim);

NEXT_PASS (pass_walloca, false);

NEXT_PASS (pass_pre);

NEXT_PASS (pass_sink_code

NEXT_PASS (pass_sancov);

NEXT_PASS (pass_asan);

NEXT_PASS (pass_tsan)

/true);

false /* unsplit edges */);

NEXI_PASS (pass_tree_Lloop);

PUSH_INSERT_PASSES_WITHIN (pass_tree_loop)

/* Before loop_init we rewrite no longer addressed locals into SSA
form if possible. %/

NEXT_PASS (pass_tree_loop_init);

NEXT_PASS (pass_tree_unswitch);

NEXT_PASS (pass_loop_split);

NEXT_PASS (pass_scev_cprop);

NEXT_PASS (pass_loop_versioning);

NEXT_PASS (pass_loop_jam);

/* ALl unswitching, final value replacement and splitting can expo
empty loops. Remove them now. %/

NEXT_PASS (pass_cd_dce, false /% update_address_taken_p */);

NEXT_PASS (pass_iv_canon);

NEXT_PASS (pass_loop_distribution);

NEXT_PASS (pass_linterchange);

NEXT_PASS (pass_copy_prop);

NEXT_PASS (pass_graphite);

PUSH_INSERT_PASSES_WITHIN (pass_graphite)
NEXT_PASS (pass_graphite_transforms);
NEXT_PASS (pass_lim);
NEXT_PASS (pass_copy_prop);
NEXT_PASS (pass_dce);

POP_INSERT_PASSES ()

NEXT_PASS (pass_parallelize_loops, false /x oacc_kernels_p */);

NEXT_PASS (pass_expand_omp_ssa);

NEXT_PASS (pass_ch_vect);

NEXT_PASS (pass_if_conversion);

/* pass_vectorize must immediately follow pass_if_conversion.
Please do not add any other passes in between. */

NEXT_PASS (pass_vectorize);

PUSH_INSERT_PASSES_WITHIN (pass_vectorize)
NEXT_PASS (pass_dce);

POP_INSERT_PASSES ()

NEXT_PASS (pass_predcom);

NEXT_PASS (pass_complete_unroll);

NEXT_PASS (pass_pre_slp_scalar_cleanup);

PUSH_INSERT_PASSES_WITHIN (pass_pre_slp_scalar_cleanup)
NEXT_PASS (pass_fre, false /* may_iterate x/);
NEXT_PASS (pass_dse);

POP_INSERT_PASSES ()

NEXT_PASS (pass_slp_vectorize);

NEXT_PASS (pass_loop_prefetch);

/* Run IVOPTs after the last pass that uses data-reference analysi
as that doesn't handle TARGET_MEM_REFs. */

NEXT_PASS (pass_iv_optimize);

NEXT_PASS (pass_lim);

NEXT_PASS (pass_tree_loop_done);

POP_INSERT_PASSES ()

/* Pass group that runs when pass_tree_loop is disabled or there
are no loops in the function. x/

NEXT_PASS (pass_tree_no_loop);

PUSH_INSERT_PASSES_WITHIN (pass_tree_no_loop)

NEXT_PASS (pass_slp_vectorize);

POP_INSERT_PASSES ()

NEXT_PASS (pass_simduid_cleanup);

NEXT_PASS (pass_lower_vector_ssa);

NEXT_PASS (pass_lower_switch);

NEXT_PASS (pass_cse_sincos);

NEXT_PASS (pass_cse_reciprocals);

NEXT_PASS (pass_reassoc, false /% early_p */);

NEXT_PASS (pass_strength_reduction);

NEXT_PASS (pass_split_paths);

NEXT_PASS (pass_tracer);

NEXT_PASS (pass_fre, false /+ may_iterate */);

/* After late FRE we rewrite no longer addressed locals into SSA
form if possible. x/

NEXT_PASS (pass_thread_jumps, /*first=«/false);

NEXT_PASS (pass_dominator, false /x may_peel_loop_headers_p */);

NEXT_PASS (pass_strlen);

NEXT_PASS (pass_thread_jumps_full, /*firs

NEXT_PASS (pass_vrp, true /% final_p */);

/* Run CCP to compute alignment and nonzero bits. x/

NEXT_PASS (pass_ccp, true /% nonzero_p */

NEXT_PASS (pass_warn_restrict);

NEXT_PASS (pass_dse);

NEXT_PASS (pass_dce, true /% update_address_taken_p */);

/* After late DCE we rewrite no longer addressed locals into SSA
form if possible. %/

NEXT_PASS (pass_forwprop);

NEXT_PASS (pass_sink_code, true /% unsplit edges *

NEXT_PASS (pass_phiopt, false /% early_p */);

NEXT_PASS (pass_fold_builtins);

NEXT_PASS (pass_optimize_widening_mul);

NEXT_PASS (pass_store_merging);

/* If DCE is not run before checking for uninitialized uses,
we may get false warnings (e.g., testsuite/gcc.dg/uninit-5.c).
However, this also causes us to misdiagnose cases that should
real warnings (e.g., testsuite/gcc.dg/pri8501.c). */

NEXT_PASS (pass_cd_dce, false /* update_address_taken_p */);

/false);

NEXT_PASS (pass_tail_calls);
/* Split critical edges before late uninit warning to reduce the
number of false positives from it. =/
NEXT_PASS (pass_split_crit_edges);
NEXT_PASS (pass_late_warn_uninitialized);
NEXT_PASS (pass_local_pure_const);
NEXT_PASS (pass_modref);
/* uncprop replaces constants by SSA names.
and thus it should be run last. */
NEXT_PASS (pass_uncprop);
POP_INSERT_PASSES ()
NEXT_PASS (pass_all_optimizations_g);
PUSH_INSERT_PASSES_WITHIN (pass_all_optimizations_g)
/* The idea is that with -0g we do not perform any IPA optimization
so post-IPA work should be restricted to semantically required
passes and all optimization work is done early. x/
NEXT_PASS (pass_remove_cgraph_callee_edges);
NEXT_PASS (pass_strip_predict_hints, false /x early_p */);
/* Lower remaining pieces of GIMPLE. %/
NEXT_PASS (pass_lower_complex
NEXT_PASS (pass_lower_bitint);
NEXT_PASS (pass_lower_vector_ssa);
NEXT_PASS (pass_lower_switch);
/* Perform simple scalar cleanup which is constant/copy propagation.
NEXT_PASS (pass_ccp, true /% nonzero_p */
NEXT_PASS (pass_post_ipa_warn);
NEXT_PASS (pass_object_sizes);
/* Fold remaining builtins. x/
NEXT_PASS (pass_fold_builtins);
NEXT_PASS (pass_strlen);

This makes analysis harde

se

s

r

*/

500+ LoC to define the order

https://github.com/gcc-mirror/gcc/blob/master/gcc/passes.def

Compiler optimizations are hard to design

Compiler optimizations are hard to design

Observation: program transformations are destructive

?V X 2

2V X2 = ?2V << 1]
(XX2)+2 > (X<<1)+2
2V X

(PX X ?Y) +7Z — 2X X (Y = ?Z) |
2X=?2X -1

2XX1 - 272X

ality Saturation

Non-destructive rewriting

Tate, R., et al, "Equality Saturation: a New Approach to Optimization," in Logical Methods in Computer Science, 2011.

Willsey, M., et al. "egg: Fast and extensible equality saturation," in Proceedings of the ACM on Programming Languages, vol. 5, no. POPL, pp. 1-29, 2021.

quality Saturation

Convert to an e-graph

Input

Program

o mommmmom
.

Rewrite till
saturation / timeout

Rewrite
Rules

Tate, R., et al, "Equality Saturation: a New Approach to Optimization," in Logical Methods in Computer Science, 2011.
Willsey, M., et al. "egg: Fast and extensible equality saturation," in Proceedings of the ACM on Programming Languages, vol. 5, no. POPL, pp. 1-29, 2021.

quality Saturation

®

£ Term

Convert to an e-graph
Extraction §

Input

Program

o mommmmom
.
- E E m m

Rewrite till)
saturation / timeout

Focus of our work

- (Part A)

Rewrite
Rules

Tate, R., et al, "Equality Saturation: a New Approach to Optimization," in Logical Methods in Computer Science, 2011.
Willsey, M., et al. "egg: Fast and extensible equality saturation," in Proceedings of the ACM on Programming Languages, vol. 5, no. POPL, pp. 1-29, 2021.

Equality Saturation and E-Graphs

Converting terms to E-Graphs

Root E-Class

i Il I = = = =

E-Nodes: Function E-Classes:
symbols, literals Equivalent terms

Tate, R., et al, "Equality Saturation: a New Approach to Optimization," in Logical Methods in Computer Science, 2011.

Willsey, M., et al. "egg: Fast and extensible equality saturation," in Proceedings of the ACM on Programming Languages, vol. 5, no. POPL, pp. 1-29, 2021.

10

Equality Saturation and E-Graphs

Program Transformations with Syntactic Rewrites

¢ EE B B B = n

- mmaEmmmw
a“am = --'

¢ IIN I I I B I N N N N N == W

.---'

(2X X ?Y) + 2Z — ?2X X (?Y = 22Z)

2X=?2X -1
2XX1 — ?2X

Non-destructive rewriting

Tate, R., et al, "Equality Saturation: a New Approach to Optimization," in Logical Methods in Computer Science, 2011.

Willsey, M., et al. "egg: Fast and extensible equality saturation," in Proceedings of the ACM on Programming Languages, vol. 5, no. POPL, pp. 1-29, 2021.

i

Equality Saturation and E-Graphs

Term Extraction

¢ HE I BN = = n

1. Assign a cost for each E-Node

o mmammm

¢ EE B B B BH B B B B B B B = W

o = m\m m omow

.

Tate, R., et al, "Equality Saturation: a New Approach to Optimization," in Logical Methods in Computer Science, 2011.

Willsey, M., et al. "egg: Fast and extensible equality saturation," in Proceedings of the ACM on Programming Languages, vol. 5, no. POPL, pp. 1-29, 2021.

12

Equality Saturation and E-Graphs

Term Extraction

¢ I I BN B = n

1. Assign a cost for each E-Node

¢ I I B B B B B B B B =B =B = W

S

Tate, R., et al, "Equality Saturation: a New Approach to Optimization," in Logical Methods in Computer Science, 2011.

Willsey, M., et al. "egg: Fast and extensible equality saturation," in Proceedings of the ACM on Programming Languages, vol. 5, no. POPL, pp. 1-29, 2021.

13

Equality Saturation and E-Graphs

Term Extraction

1. Assign a cost for each E-Node

o mmammm

2.Pick the min-cost term

--------------- =10+4+1=1
Attempt: Greedy Cost=10 5

¢ I I B = = m

Is That It?

Tate, R., et al, "Equality Saturation: a New Approach to Optimization," in Logical Methods in Computer Science, 2011.

Willsey, M., et al. "egg: Fast and extensible equality saturation," in Proceedings of the ACM on Programming Languages, vol. 5, no. POPL, pp. 1-29, 2021.

14

Optimal:
M+9+5=25

Term Extraction
When Greedy Fails

Greedy:
M+8+5+5=29

15

Previous work: ILP-based extraction

Root Constraint:
Extract at least one E-Node from the Root E-Class

Choose
One!

Children Constraints:
If an E-Node 7 is extracted, then for all E-Class C, if C

Objective:
Minimize the sum of costs of extracted E-Node

Yichen Yang, Phitchaya Mangpo Phothilimtha, Yisu Remy Wang, Max Willsey, Sudip Roy, Jacques Pienaar. "Equality Saturation for Tensor Graph Superoptimization." (2021). 16

Previous work: ILP-based extraction

¢ EE B B B = n

Variables: v, for each e-node x

RN IS

Objective: Root Constraint: Z vl T
min Z cost(x) - v, rcRoot
X

Children Constraints: —v,_ + Z v, 2 1
ye(,
for each child C; of x

o3
3 O
LA
@

Yichen Yang, Phitchaya Mangpo Phothilimtha, Yisu Remy Wang, Max Willsey, Sudip Roy, Jacques Pienaar. "Equality Saturation for Tensor Graph Superoptimization." (2021). 17

Previous work: ILP-based extraction
Cycles

How to avoid infinite expansions?

Yichen Yang, Phitchaya Mangpo Phothilimtha, Yisu Remy Wang, Max Willsey, Sudip Roy, Jacques Pienaar. "Equality Saturation for Tensor Graph Superoptimization." (2021).

18

Previous work: ILP-based extraction

Topological Order Constraints

Variables: v, for each e-node x

Objective: Root Constraint: Z v, > 1
min)’ cost(x) - v, rcRoot o
: oose
x i i :
Children Constraints: —v_+ Z v, 2 1 :

ye(,
for each child C; of x

Yichen Yang, Phitchaya Mangpo Phothilimtha, Yisu Remy Wang, Max Willsey, Sudip Roy, Jacques Pienaar. "Equality Saturation for Tensor Graph Superoptimization." (2021). 19

Previous work: ILP-based extraction

Topological Order Constraints

Variables: v, , 0, for each e-node x

Topological order

Objective: Root Constraint: Z v, > 1 ¥ Choose
min Z cost(x) - v, rcRoot M One!
X

Children Constraints: —v, + Z v, 2 1
ye(;
for each child C; of x

Topological order constraints: 0, > o, + | (if V, = 1), (y is in some children of x)

Yichen Yang, Phitchaya Mangpo Phothilimtha, Yisu Remy Wang, Max Willsey, Sudip Roy, Jacques Pienaar. "Equality Saturation for Tensor Graph Superoptimization." (2021). 20

Previous work: ILP-based extraction

Topological Order Constraints

Variables: v, , 0, for each e-node x

Topological order

Objective: Root Constraint: Z v, > 1
min Z cost(x) - v, rcRoot
X

Children Constraints: —v, + Z v, 2 1
ye(,

for each child C; of x Choose
Onel

Topological order constraints: 0, + (1=v,)-L>o0,+1 (yisinsome children of x)

L is a large enough constant

lllllllllllllllllllllllllllllllllllll 'S
| |
| 2

Variables: O(n) # Constraints: O(n)
Yichen Yang, Phitchaya Mangpo Phothilimtha, Yisu Remy Wang, Max Willsey, Sudip Roy, Jacques Pienaar. "Equality Saturation for Tensor Graph Superoptimization." (2021). 21

Our solution 1: ILP + Acyclicity constraints

Variables: v, for each e-node x

Objective: Root Constraint: Z v, > 1 ‘
min Z cost(x) - v, xcRoot
M One!
Children Constraints: —v, + Z v, 21 '
ye(,
for each child C; of x

Works well when number of cycles is reasonable

'--‘
1=
O
<
2
O,
=k
<
O
O
=
(R
(o
1
=
=
=k
s
O
O
-
O
—~+
D
X
e
-
Q
O
—~+
QD
=)
~<
O
<
DS
(>

22

Acyclicity constraints

(7x; A x,)
—

01 <> (_'Xl N\ _'.XZ)>

/\ <02 < (7Y A7)

01 \V4 02\/ e

Acyclicity constraints in
ILP formulation

23

Solution 1: ILP + Acyclicity constraints

Variables: v, for each e-node x

Objective: Root Constraint: Z v, > 1
min Z cost(x) - v, xcRoot
* Children Constraints: —v, + Z v, 2 1
ye(,

for each child C; of x

Acyclicity constraints in

Acyclicity Constraints:

ILP formulation

Variables: O(n) # Constraints: O(n - #cycles) . Search Space: O(2").,

4

24

Solution 2: Weighted Partial MaxSAT

For each E-Node x, create a boolean variable v,

v.is I © xisinthe extracted term

Must always be satisfied m

Hard Clauses Soft Clauses

Root Constraint: Children Constraints:

\/ y, = /\ \/ v -y, with weight cost(x)

xeRoot cechildren(x) x'eC

Acyclicity Constraints:

Tesitin \/ /\ V,

C; xeCain_cycle(x)

Objective:
Maximizing weight of unextracted E-Nodes

Variables: O(n) # Constraints: O(n - #cycles) Search Space: O(2")

25

Term extraction
Complexity

Solution 1 (ILP-ACyc): ILP formulation with acyclic constraints
Solution 2 (WPMAXSAT): Weighted partial MaxSAT formulation with acyclic constraints

Previous work (ILP-Topo): ILP with topological order constraints

Encoding | # Variables # Constraints ngi:glzzftze
ILP-ACYC | O(n, O(nk O |

wemaxsar | 1 (150 (2) | same solution space
ILP-Topo O(n) O(n) 02" + n™

n: number of E-Nodes k: number of E-Class cycles — Potentially Exponential
26

Term extraction

Evaluation benchmarks

Empirically
Implemented a prototype in the egg [1] framework
Workload: term extraction after equality saturation on tensor programs (DNNs) including

MobileNetV2, ResMLP, ResNet-18, ResNet-50, EfficientNet

Rewrite rules from Glenside [2] Alpglc alslple
» Image-to-column (im2col) only D|E F B|C|E|F
 Image-to-column (im2col) + simplifications |G| H | | D| E|G|H

(operator fusion, reordering, etc.) E|F|H]| I

Im2col of a 3x3 input for a 2x2 kernel

KI@Willsey, M., et al. "egg: Fast and extensible equality saturation," in Proceedings of the ACM on Programming Languages, vol. 5, no. POPL, pp. 1-29, 2021.
MA@ Smith, Gus Henry, Andrew, Liu, Steven, Lyubomirsky, Scott, Davidson, Joseph, McMahan, Michael, Taylor, Luis, Ceze, Zachary, Tatlock. "Pure tensor program rewriting via access patterns

(representation pearl)." Proceedings of the 5th ACM SIGPLAN International Symposium on Machine Programming. ACM, 2021. -

Term extraction

Benchmark statistics

MobileNetV2 ResMLP ResNet-18 ResNet-50 EfficientNet
Unit: 1,000
Im2Col+ Im2Col+ Im2Col+ Im2Col+ Im2Col+
Im2Col SIMPL Im2Col SIMPL Im2Col SIMPL Im2Col SIMPL Im2Col SIMPL
E-Nodes 50 20 40 8 35 8 45 40 50 20
E-Classes 25 6 20 2.5 25 3 22 20 20 7
Cycles

Statistics of saturated E-Graphs (Unit: 1k)

28

Term Extraction Time
IM2COL only

Term extraction

Evaluation results
Upper: Image-to-column rewrite rule only
Lower: Image-to-column + simplifications including
I I | Operator fusion, reordering, etc.
I I WPMAXSAT ILP-ACyc ILP-Topo
mobilenetv2 resmlp | resnetl8 efflaentnet esnet50

(IMQCOL + SIMPL)
ILP-Topo timeouts (300s)
Solving WPMAXSAT and ILP-ACyc
Is ~3x faster than solving ILP-Topo
For a larger input, solving ILP-Topo (previous work) timeouts after
300s while solving WPMAXSAT and ILP-ACyc takes a few seconds

mobilenetv2 resmlp resnetl8 efficientn . o . "
X: Models Optimality is guaranteed by all encodings

Y: End-to-End extraction time (milliseconds)

Extraction Time (ms)

., et al, "Improving Term Extraction with Acyclic Constraints," in E-Graph Research, Applications, Practices, and Human-factors Symposium (EGRAPHS23), 2023.

YAS

EGRAPHS'23 Workshop paper
https://www.cs.princeton.edu/~dh7120/assets/papers/EGRAPHS2023.pdf

30

CatsTail: P4 Resource Synthesis using
Equality Saturation

Programmable switches

Key Value Action

- = :

Src_Ip ([OXON N DROP
Control Plane

count 1 INCR(num_pkt)

Match-action tables

Bosshart, Pat, Dan, Daly, Glen, Gibb, Martin, 1zzard, Nick, McKeown, Jennifer, Rexford, Cole, Schlesinger, Dan, Talayco, Amin, Vahdat, George, Varghese, David, Walker.
"P4: programming protocol-independent packet processors". SIGCOMM Comput. Commun. Rev. 44. 3(2014): 87-95. 32

Mapping to programmable switches is hard

// process packets

Doesn't Fit! Abstracts away hardware details
If match(p.src | .
4 P filtelfzd — ()) Rewrite your Arb(':tgi';:'o‘ﬁlr;‘vli\),l;tes
prcialio= 1D b Any number of logical stages

P4 Compiler

Fixed-size tables
Fixed-function ALUs

Fixed number of physical stages
Etc...

Deparser

Match-action tables

33

Mapping to programmable switches is hard

Challenge 1: Limited # of Stages

Challenge 2: Table Dependencies
Challenge 3: Targeting different backends

34

Mapping to programmable switches is hard
Challenge 1: Limited # of Stages

35

Mapping to programmable switches is hard
Challenge 1: Limited # of Stages

36

Mapping to programmable switches is hard
Challenge 2: Table Dependencies

: Table 1 Table 2
R/W DependenCIeS Reads: 11 Writes: f1
(this example) Write-after-Read

Read-after-Write
Write-after-Write

Stage X StageY
X<Y

37

Mapping to programmable switches is hard
Challenge 3: Targeting different backends

// process packets
If match(p.src)
p.filtered =0
p.ciallo=1D

\
|
|
|
|
|

/

N - - — -

38

Previous work: CaT

CaT Com p| ler Ny rs14 YN Tofino

S et O Qe & Compiler

[¢

| Phase 1 Ihase 2 Phase3 [

:) @ﬁ Generated ¥ Allocation
[

1: |
Phase 1: Resource Transformation @ W Menshen

. : . L Y ConfigurationY ™
Phase 2: Resource Synthesis (Sketch synthesis) , Eilo 4 Simulator

Phase 3: Resource Allocation

Y m

Figure 1: The workflow of the CaT compiler.

Gao, Xiangyu, Divya, Raghunathan, Ruijie, Fang, Tao, Wang, Xiaotong, Zhu, Anirudh, Sivaraman, Srinivas, Narayana, Aarti, Gupta. "CaT: A Solver-Aided Compiler for Packet-

Processing Pipelines." Proceedings of the 28th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 3.
Association for Computing Machinery, 2023. 39

Previous work: CaT

Our Focus
CaT Compile P4-14 'y Tofino

I I = I O O = . lE Ny Prog ram 4 Com pi ler

Phase 1 Phase 2 ase 3

Phase 1: Resource Transformation
Phase 2: Resource Synthesis (Sketch synthesis)
Phase 3: Resource Allocation

W Configuration}®¥ Menshen
File 4 Simulator

Figure 1: The workflow of the CaT compiler.

Gao, Xiangyu, Divya, Raghunathan, Ruijie, Fang, Tao, Wang, Xiaotong, Zhu, Anirudh, Sivaraman, Srinivas, Narayana, Aarti, Gupta. "CaT: A Solver-Aided Compiler for Packet-

Processing Pipelines." Proceedings of the 28th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 3.
Association for Computing Machinery, 2023. 40

Resource synthesis via Equality Saturation

Frontend Transformations Equality Saturation Synthesis Extraction

S d -
S I~ 28

—

' / ITE Transformations

v |
o

= —
o

4 /Min-depth-min-\:>

L xtraction '
Path Condition ,- cost extractio Valid program P
| C(P) < o0
r , .‘
Oﬁ' Conditional / i .
Symbolic Assignments , , _‘ :
Execution ; y ; '
Field Assignments 3 / ‘ :>
4 Invalid program P

Loop-free : \ Yy / / : e(P) = o

programs; § 3

t From control flows to 1
Conditiona| assignment / Min-depth-min-cost extraction: }
i minimizing stage utilization ;

Ifs, assigns

GO = S . S - " P ~o o gAree =
LV IS - DRI e A 8. Lo _pochs B ERE CI2NY

N

Rewrite rules addressing) S ————_
the 3 challenges

Frontend transformation

IIIII

'III)

Action

ite(hdr.f2 ==0, e1, e2)

hdr.f3

== 0, e3, e4)

ite(hdr.f1

hdr.f4

Match

. '

lte(f1

4
|
|
|
|
i

42

Frontend transformation

Introduce Table operators to allow table transformations

T1 must be placed before T2

d o

T1and T2 are put in the same stage

43

Rewrite rules

Challenge 1: Limited resource Challenge 2: Table Dependencies Challenge 3: Different backends

General-purpose program Table Transformations Synthesis rewrites
transformations 1-1 to sketch grammars in
CaT (Gao et al.)

X+ 2y =>7?y +7?X Table parallelization
(?x +?2y) + 2z <=> ?2x + (?y + ?2) Subexpression lifting ?x + ?y => alu_add ?x ?y

?x+0=>7x Table merging if mapped(?x) & mapped(?y)
~(?X & ?y) => ~?x | ~?y Etc...

72X & ?7x => ?X ?V =ite(?x == ?y, ?x + 7z, 7x) =>
ite(true, ?x, ?y) => ?x stateful_alu(if, ?V, ?2x ==?y, ?2x + z, 7x)
ite(false, ?x, ?y) => ?y if ...
Etc...

52 Rules 10 Rules Tofino: 11 Rules Domino: 21 Rules

Sivaraman, Anirudh, Alvin, Cheung, Mihai, Budiu, Changhoon, Kim, Mohammad, Alizadeh, Hari, Balakrishnan, George, Varghese, Nick, McKeown, Steve, Licking. "Packet Transactions: High-
Level Programming for Line-Rate Switches." Proceedings of the 2016 ACM SIGCOMM Conference. Association for Computing Machinery, 2016. 44

Table transformations

Goals:

» Explores different topological orders of applying tables
 Parallelizing table placements
« Decomposing computations

- Eliminate table dependencies

45

Table transformations

Decomposing computations

hdr.value = ite(hdr.f1 + hdr.f2 + C > hdr.f3,
el,
e?)

Lift computes with depth > 3

46

Table transformations

Decomposing computations

hdr.tmp = hdr.f1 + hdr.f2

el,
e?)

Lift computes with depth > 3

hdr.value = ite(hdr.tmp + C > hdr.f3,

4]

Table transformations

Decomposing computations

hdr.value = ite(hdr.tmp + C > hdr.f3,
........... e’l'
e2)

"""""" hdr.tmp = hdr.f1 + hdr.f2;

Can be done if split computation does not involve global variables

48

Synthesis rewrites

Target-dependent rewrite rules
Based on ALU Grammars used for Sketch-guided synthesis in CaT (Gao et al.)

Stateless ALUs Stateful ALUs

May modify a register file in the ALU

Pure computations (representing global variables)

'-----.
A E E E E E EE m .
i I I B IH I N N N
-----'

SKETCH: a Syntax-guided Synthesis-based technique; Program sketches with holes

R. Alur et al., "Syntax-guided synthesis," 2013 Formal Methods in Computer-Aided Design, Portland, OR, USA, 2013, pp. 1-8, doi: 10.1109/FMCAD.2013.6679385.

Solar-Lezama, A. (2009). The Sketching Approach to Program Synthesis. In: Hu, Z. (eds) Programming Languages and Systems. APLAS 2009. Lecture Notes in Computer
Science, vol 5904. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10672-9_3 49

Synthesis rewrites
Stateless ALUs

Inductively defined based on Sketch grammars

—

alu_add

A 24

Base Case: X and Y are literals or PHV field variable

Induction Step: X and Y represent stateless ALU computations

50

Synthesis rewrites
Stateful ALUs

Based on Sketch grammars

SAlu-lte

ite

' ?20p

?2v1 ?gvar ?7v2 ?gvar

With conditions that

1. is a global variable or O
2. and are PHYV fields or constants

Limitations: a global variable is not read/written by two different tables
51

Rewrite rules

Efficiently explores the space of candidate mappings by composing the rewrite rules via Equality Saturation

General-purpose program Table Transformations Synthesis rewrites
transformations 1-1 to sketch grammars in
CaT (Gao et al.)

X+ 2y =>7?y +7?X Table parallelization
(?x +?2y) + 2z <=> ?2x + (?y + ?2) Subexpression lifting ?x + ?y => alu_add ?x ?y

?x+0=>7x Table merging if mapped(?x) & mapped(?y)
~(?X & ?y) => ~?x | ~?y Etc...

?X & ?X =>?X 2V = ite(?x == ?y, ?x + ?z, ?X) =>
ite(true, ?x, ?y) => ?x stateful_alu(if, ?V, ?2x ==?y, ?2x + z, 7x)
ite(false, ?x, ?y) => ?y if ...

Etc...

52 Rules 10 Rules Tofino: 11 Rules Domino: 21 Rules

Sivaraman, Anirudh, Alvin, Cheung, Mihai, Budiu, Changhoon, Kim, Mohammad, Alizadeh, Hari, Balakrishnan, George, Varghese, Nick, McKeown, Steve, Licking. "Packet

Transactions: High-Level Programming for Line-Rate Switches." Proceedings of the 2016 ACM SIGCOMM Conference. Association for Computing Machinery, 2016.

Extraction

Goal: Extract min-depth computation tree

cost(7)) + cost(75)

max (COSt(Tl), COSt(Tz))

53

Extraction

Goal: Extract min-depth computation tree

max (Cost(Ai))

l

54

Extraction

Goal: Extract min-depth computation tree

ite (mapped(f(X, Y)), max (Cost(X), Cost(Y)) + l,oo)

Only allow extracting computations that are already mapped to target backends

55

Extraction

Min-depth-min- CD
cost extraction Solution Exists: P

C(P) < o0

C:Mio — N
Solution Doesn’t Exist

C(P) =

€ (P) = Minimum number of stages required to map &

56

Evaluations

RQ1: Efficiency of CatsTail: synthesis time compared with the previous work CaT (Gao et al.)
RQ2: Efficacy of CatsTail: stage utilization compared with CaT

RQ3: Does the extraction always succeed?

57

Evaluations

RQ1: Efficiency of CatsTail: synthesis time compared with the previous work CaT (Gao et al.)

Experiments setup:

Target Backends: Intel Tofino and Domino (Banzai) ALUs
Input programs: 8 P4 programs with real-word applications, including:

Rate control protocol, Packet sampling, Flowlet Switching,
Stateful firewall,Blue increase/decrease, Marple flow

Rewrite Rules:
For the Tofino backend, we enable all the synthesis rewrite
For the Domino backend, we ran two sets of experiments:
1. Full: All synthesis rewrite rules
2. Sk: synthesis rewrite rules corresponding to the sketch grammar
CaT used in their benchmark

58

Evaluations

RQ1: Efficiency of CatsTail: synthesis time compared with the previous work CaT (Gao et al.)

Tofino synthesis time comparison (ms)

CatsTail
1.00E+3

~an order of magnitude
faster in synthesis

1.00E+1

Sampling Blue Increase Flowlet switching Marple NMO Marple new flow

CatsTaill = CaT

(b) Synthesis time comparison for Intel Tofino ALUs

X: Benchmark cases.

Y: Synthesis time (ms), in log-scale Successfully synthesized

59

Evaluations

RQ1: Efficiency of CatsTail: synthesis time compared with the previous work CaT (Gao et al.)

CatsTail-Full

CatsTail ran with all rewrite rules

CatsTail-Sk

Similar to CatsTail-Full except
the synthesis rules only include those
corresponds to sketches used in CaT

Sampling Blue Increase Flowlet Marple TCP Marple new Stateful FW JLearn Filter
switching NMO flow
CatsTail-Full m CatsTail-Sk CaT

CaT

Successfully synthesized
Orders of magnitude faster CaT synthesis time

60

Evaluations

RQ2: Efficacy of CatsTail: stage utilization compared with CaT

Table 1. Comparison of the number of stages required to map the synthesized program given by CATSTAIL
and CaT [Gao et al. 2023] to Intel Tofino switches and Domino switches.

Benchmark # Stages on Tofino
| CarsTarL | CaT | CarsTam | CaT

H

= DN
> DN

 Blueerease | 4 | 4 | 1 | 1
“Flowlet Switching | 3| 3 | 2 | 2 _
MarpleFlowNMO | 2| 3 | 2 | 2
BT) S —

Wik NN W
Wik DN W W

Same numbers of stage utilization Nested ifs not supported by
Tofino switch

61

Evaluations

RQ3: Does the extraction always succeed?

// process packets
If some_func(p.src)
p.ciallo =1
else
P.drop =1

CatsTall C(P) = o0

Incompleteness of general purpose / table transformation rules

62

Evaluations

RQ3: Does the extraction always succeed?

S
O
U

3 CatsTail

|
1
1

A

e
(D)

A

Auxiliary
rewrites

63

Evaluations

RQ1: Efficiency of CatsTail: synthesis time compared with the previous work CaT (Gao et al.)

Orders of magnitude faster compared with CaT, thanks to the scalability of egg

RQ2: Efficacy of CatsTail: stage utilization compared with CaT

Stage utilization is as good as CaT

RQ3: Does the extraction always succeed?

No, but we can work around

64

Report

https://www.cs.princeton.edu/~dh7120/
assets/papers/COS539Report.pdf

oD

[=]

Prototype
https://github.com/AD1024/CatsTail/

65

https://www.cs.princeton.edu/~dh7120/assets/papers/COS539Report.pdf
https://github.com/AD1024/CatsTail/

Outline

1. Brief introduction to equality saturation
2. Term Extraction for equality saturation (Part A)
3. Applying equality saturation for network resource synthesis (Part B)

4. (If time permits) Ongoing project of invariant synthesis for distributed systems

66

Recent project: Pinfer

Learning invariants for distributed systems from traces

Specification

Trace Data Mining Invariants

System Trace
Deployment Grammar P Model

Desai, Ankush, Vivek, Gupta, Ethan, Jackson, Shaz, Qadeer, Sriram, Rajamani, Damien, Zufferey. "P: safe asynchronous event-driven programming." Proceedings of the 34th
ACM SIGPLAN Conference on Programming Language Design and Implementation. Association for Computing Machinery, 2013.

Recent project: Pinfer

Learning invariants for distributed systems from traces

Specification

Trace Data Mining Invariants

System Trace
Deployment Grammar P Model

Desai, Ankush, Vivek, Gupta, Ethan, Jackson, Shaz, Qadeer, Sriram, Rajamani, Damien, Zufferey. "P: safe asynchronous event-driven programming." Proceedings of the 34th
ACM SIGPLAN Conference on Programming Language Design and Implementation. Association for Computing Machinery, 2013.

Recent project: Pinfer

Learning invariants for distributed systems from traces

Invariant Refinement

4)

Trace Data #: Spec!flf: ation
’ Mining

1
$

System Trace Refined

Deployment Grammar Invariants P Model

Desai, Ankush, Vivek, Gupta, Ethan, Jackson, Shaz, Qadeer, Sriram, Rajamani, Damien, Zufferey. "P: safe asynchronous event-driven programming." Proceedings of the 34th
ACM SIGPLAN Conference on Programming Language Design and Implementation. Association for Computing Machinery, 2013.

Invariant learning: Related works

Protocol Definition + Enumerate combinations of
Invariants checking predicates and connectives
Invariants about
lvy SWISS
messages / events

Invariants
about states (Ivy-style)

K. McMillan, O. Padon, "lvy: A Multi-modal Verification Tool for Distributed Algorithms," in Computer Aided Verification: 32nd International Conference, CAV 2020, Los Angeles, CA, USA, July 21-
24, 2020, Proceedings, Part Il, 2020, pp. 190-202.

Travis Hance, Marijn Heule, Ruben Martins, Bryan Parno. "Finding Invariants of Distributed Systems: It's a Small (Enough) World After All." 18th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 21). USENIX Association, 2021.

Jianan Yao, Runzhou Tao, Ronghui Gu, Jason Nieh. "DuoAl: Fast, Automated Inference of Inductive Invariants for Verifying Distributed Protocols." 16th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 22). USENIX Association, 2022.

Jianan Yao, Runzhou Tao, Ronghui Gu, Jason Nieh, Suman Jana, Gabriel Ryan. "DistAl: Data-Driven Automated Invariant Learning for Distributed Protocols." 15th USENIX Symposium on

Operating Systems Design and Implementation (OSDI 21). USENIX Association, 2021. 70

Invariant learning

Challenges:

1. Huge search space: many valid predicates over events and payloads

Brute-force enumeration leads to vacuously true/false invariants, which are not useful for production systems

Trace Grammar that focuses useful predicates

2. Efficiency: enumerating logical connectives is computationally computationally intractable

Formulate invariant learning as a boolean function learning problem

71

