
Equality Saturation:

Term Extraction and an Application to Network Synthesis

Examination Committee

Prof.Aarti Gupta (Advisor) Prof.Andrew Appel Prof.Mae Milano

General Exam: Deyuan (Mike) He

April 17, 2024

1

Outline

1. Brief introduction to equality saturation

2. Term Extraction for equality saturation (Part A)

3. Applying equality saturation for network resource synthesis (Part B)

4. (If time permits) Ongoing project of invariant synthesis for distributed systems

2

Compiler optimizations are hard to design

Inlining

Code motion

Constant folding

Load store
forwarding

Vectorize loop

3

Compiler optimizations are hard to design

Inlining

Code motion

Constant folding

Load store
forwarding

Vectorize loop

Inlining

Code motion

Constant folding

Load store
forwarding

Vectorize loop

Inlining

Code motion

Constant folding

Load store
forwarding

Vectorize loop

Which order to choose?

4

Phase Ordering Problem

Compiler optimizations are hard to design
GCC’s passes.def

…… ……

500+ LoC to define the order
https://github.com/gcc-mirror/gcc/blob/master/gcc/passes.def 5

Compiler optimizations are hard to design
Observation: program transformations are destructive

(X × 2) ÷ 2 (X << 1) ÷ 2

6

?V × 2 → ?V << 1

(?X × ?Y) ÷ ?Z → ?X × (?Y ÷ ?Z)
?X ÷ ?X → 1

?V ↦ X

?V × 2

(X × 2) ÷ 2

?X × 1 → ?X

Non-destructive rewriting

Equality Saturation

7Willsey, M., et al. "egg: Fast and extensible equality saturation," in Proceedings of the ACM on Programming Languages, vol. 5, no. POPL, pp. 1–29, 2021.
Tate, R., et al, "Equality Saturation: a New Approach to Optimization," in Logical Methods in Computer Science, 2011.

Equality Saturation

8

Input
Program

Rewrite
Rules

Rewrite till
saturation / timeout

Convert to an e-graph

Willsey, M., et al. "egg: Fast and extensible equality saturation," in Proceedings of the ACM on Programming Languages, vol. 5, no. POPL, pp. 1–29, 2021.
Tate, R., et al, "Equality Saturation: a New Approach to Optimization," in Logical Methods in Computer Science, 2011.

Equality Saturation

9

Input
Program

Rewrite
Rules

Rewrite till
saturation / timeout

Convert to an e-graph Term

Extraction

Willsey, M., et al. "egg: Fast and extensible equality saturation," in Proceedings of the ACM on Programming Languages, vol. 5, no. POPL, pp. 1–29, 2021.
Tate, R., et al, "Equality Saturation: a New Approach to Optimization," in Logical Methods in Computer Science, 2011.

Focus of our work

(Part A)

Equality Saturation and E-Graphs

10Willsey, M., et al. "egg: Fast and extensible equality saturation," in Proceedings of the ACM on Programming Languages, vol. 5, no. POPL, pp. 1–29, 2021.

(X × 2) ÷ 2

Tate, R., et al, "Equality Saturation: a New Approach to Optimization," in Logical Methods in Computer Science, 2011.

÷

×

2X

E-Nodes: Function
symbols, literals

E-Classes:

Equivalent terms

Root E-Class

Converting terms to E-Graphs

(?X × ?Y) ÷ ?Z → ?X × (?Y ÷ ?Z)
?X ÷ ?X → 1
?X × 1 → ?X

Equality Saturation and E-Graphs
Program Transformations with Syntactic Rewrites

11

÷

×

2X

?V × 2 → ?V << 1?V × 2

?V

÷

×

2X

<<

1

Non-destructive rewriting
Willsey, M., et al. "egg: Fast and extensible equality saturation," in Proceedings of the ACM on Programming Languages, vol. 5, no. POPL, pp. 1–29, 2021.
Tate, R., et al, "Equality Saturation: a New Approach to Optimization," in Logical Methods in Computer Science, 2011.

Equality Saturation and E-Graphs

12

Term Extraction

÷

×

2X

<<

1

1. Assign a cost for each E-Node

Willsey, M., et al. "egg: Fast and extensible equality saturation," in Proceedings of the ACM on Programming Languages, vol. 5, no. POPL, pp. 1–29, 2021.
Tate, R., et al, "Equality Saturation: a New Approach to Optimization," in Logical Methods in Computer Science, 2011.

÷

×

2X

<<

1

Equality Saturation and E-Graphs

13

Term Extraction

$10
÷

$8
×

FREE!

2

$1
X

$4
<<

FREE!

1

1. Assign a cost for each E-Node

Willsey, M., et al. "egg: Fast and extensible equality saturation," in Proceedings of the ACM on Programming Languages, vol. 5, no. POPL, pp. 1–29, 2021.
Tate, R., et al, "Equality Saturation: a New Approach to Optimization," in Logical Methods in Computer Science, 2011.

Equality Saturation and E-Graphs

14

Term Extraction

$10
÷

$8
×

FREE!

2

$1
X

$4
<<

FREE!

1

1. Assign a cost for each E-Node

2.Pick the min-cost term

Attempt: Greedy

?? ?÷ 2(? << ?) ÷ 2(X << 1) ÷

Cost = 10 + 4 + 1 = 15

Is That It?
Willsey, M., et al. "egg: Fast and extensible equality saturation," in Proceedings of the ACM on Programming Languages, vol. 5, no. POPL, pp. 1–29, 2021.
Tate, R., et al, "Equality Saturation: a New Approach to Optimization," in Logical Methods in Computer Science, 2011.

Term Extraction
When Greedy Fails

15

11

9 8

5 5

Greedy:

11 + 8 + 5 + 5 = 29

Optimal:

11 + 9 + 5 = 25

Previous work: ILP-based extraction

16

11

9 8

5 5

Root Constraint:

Extract at least one E-Node from the Root E-Class

Children Constraints:

If an E-Node is extracted, then for all E-Class , if
is a child of , then extract at least one E-Node from

n C C
n C

Objective:

Minimize the sum of costs of extracted E-Node

Choose
One!

Yichen Yang, Phitchaya Mangpo Phothilimtha, Yisu Remy Wang, Max Willsey, Sudip Roy, Jacques Pienaar. "Equality Saturation for Tensor Graph Superoptimization." (2021).

Choose
One!

17

11

9 8

5 5

Choose
One!

Variables: for each e-node vx x

Root Constraint: ∑
x∈Root

vx ≥ 1

Children Constraints:

for each child of

−vx + ∑
y∈Ci

vy ≥ 1

Ci x

Objective:

 min ∑

x

cost(x) ⋅ vx

Yichen Yang, Phitchaya Mangpo Phothilimtha, Yisu Remy Wang, Max Willsey, Sudip Roy, Jacques Pienaar. "Equality Saturation for Tensor Graph Superoptimization." (2021).

Previous work: ILP-based extraction

Choose
One!

Cycles

18

?V + 0 → ?V

+

− 0

α β

?V +−

0α β

How to avoid infinite expansions?

Previous work: ILP-based extraction

Yichen Yang, Phitchaya Mangpo Phothilimtha, Yisu Remy Wang, Max Willsey, Sudip Roy, Jacques Pienaar. "Equality Saturation for Tensor Graph Superoptimization." (2021).

19

11

9 8

5 5

Choose
One!

Variables: vx

Root Constraint: ∑
x∈Root

vx ≥ 1

Children Constraints:

for each child of

−vx + ∑
y∈Ci

vy ≥ 1

Ci x

Objective:

 min ∑

x

cost(x) ⋅ vx

for each e-node x

Yichen Yang, Phitchaya Mangpo Phothilimtha, Yisu Remy Wang, Max Willsey, Sudip Roy, Jacques Pienaar. "Equality Saturation for Tensor Graph Superoptimization." (2021).

Previous work: ILP-based extraction
Topological Order Constraints

Choose
One!

20

, ox

Topological order

Topological order constraints: , (is in some children of)oy ≥ ox + 1 (if vx = 1) y x

Yichen Yang, Phitchaya Mangpo Phothilimtha, Yisu Remy Wang, Max Willsey, Sudip Roy, Jacques Pienaar. "Equality Saturation for Tensor Graph Superoptimization." (2021).

Previous work: ILP-based extraction

Variables: vx

Root Constraint: ∑
x∈Root

vx ≥ 1

Children Constraints:

for each child of

−vx + ∑
y∈Ci

vy ≥ 1

Ci x

Objective:

 min ∑

x

cost(x) ⋅ vx

for each e-node x

Topological Order Constraints

11

9 8

55

Choose
One!

Choose
One!

21

, ox

Topological order

Yichen Yang, Phitchaya Mangpo Phothilimtha, Yisu Remy Wang, Max Willsey, Sudip Roy, Jacques Pienaar. "Equality Saturation for Tensor Graph Superoptimization." (2021).

Previous work: ILP-based extraction

Variables: vx

Root Constraint: ∑
x∈Root

vx ≥ 1

Children Constraints:

for each child of

−vx + ∑
y∈Ci

vy ≥ 1

Ci x

Objective:

 min ∑

x

cost(x) ⋅ vx

for each e-node x

Topological order constraints: (is in some children of)

 is a large enough constant

oy + (1 − vx) ⋅ L ≥ ox + 1 y x
L

Variables: # Constraints: Search Space: O(n) O(n) O(2n + nn)

Topological Order Constraints

11

9 8

5 5

Choose
One!

Choose
One!

Our solution 1: ILP + Acyclicity constraints

22

Variables: vx

Root Constraint: ∑
x∈Root

vx ≥ 1

Children Constraints:

for each child of

−vx + ∑
y∈Ci

vy ≥ 1

Ci x

Objective:

 min ∑

x

cost(x) ⋅ vx

for each e-node x

Acyclicity Constraints: Do not extract any cycle

Works well when number of cycles is reasonable

11

9 8

5 5

Choose
One!

Choose
One!

Acyclicity constraints

23

x1 x2

y1 y2

z1 z2

(¬x1 ∧ ¬x2)
Tseitin

⇔
O1 ↔ (¬x1 ∧ ¬x2)
O2 ↔ (¬y1 ∧ ¬y2)

O1 ∨ O2 ∨ ¬z2
⋀

Acyclicity constraints in
ILP formulation

(¬y1 ∧ ¬y2)
¬z2

⋁

Solution 1: ILP + Acyclicity constraints

24

Variables: # Constraints: Search Space: O(n) O(n ⋅ #cycles) O(2n)

Variables: vx

Root Constraint: ∑
x∈Root

vx ≥ 1

Children Constraints:

for each child of

−vx + ∑
y∈Ci

vy ≥ 1

Ci x

Objective:

 min ∑

x

cost(x) ⋅ vx

for each e-node x

Acyclicity constraints in
ILP formulationAcyclicity Constraints:

Hard Clauses

Solution 2: Weighted Partial MaxSAT

25

For each E-Node , create a boolean variable

 is is in the extracted term

x vx
vx ⊤ ⇔ x

Root Constraint:

⋁
x∈Root

vx

Children Constraints:

vx → ⋀

C∈children(x)
⋁
x′￼∈C

vx′￼

Soft Clauses

 with weight ¬vx cost(x)

Objective:

Maximizing weight of unextracted E-Nodes

Acyclicity Constraints:

Tesitin ⋁
Ci

⋀
x∈Ci∧in_cycle(x)

vx

Must always be satisfied SAT / UNSAT

Variables: # Constraints: Search Space: O(n) O(n ⋅ #cycles) O(2n)

Term extraction
Complexity

26

Previous work (ILP-Topo): ILP with topological order constraints

Solution 1 (ILP-ACyc): ILP formulation with acyclic constraints

Solution 2 (WPMAXSAT): Weighted partial MaxSAT formulation with acyclic constraints

Encoding # Variables # Constraints Search Space
Complexity

ILP-ACyc

WPMAXSAT

ILP-Topo

O(n)

O(n)

O(nk)

O(n) O(2n + nn)

O(2n)

n: number of E-Nodes k: number of E-Class cycles

Same solution space

Potentially Exponential

Term extraction
Evaluation benchmarks

27

Empirically

Workload: term extraction after equality saturation on tensor programs (DNNs) including

Rewrite rules from Glenside [2]

• Image-to-column (im2col) only
• Image-to-column (im2col) + simplifications

(operator fusion, reordering, etc.)

MobileNetV2, ResMLP, ResNet-18, ResNet-50, EfficientNet

Smith, Gus Henry, Andrew, Liu, Steven, Lyubomirsky, Scott, Davidson, Joseph, McMahan, Michael, Taylor, Luis, Ceze, Zachary, Tatlock. "Pure tensor program rewriting via access patterns
(representation pearl)." Proceedings of the 5th ACM SIGPLAN International Symposium on Machine Programming. ACM, 2021.

Implemented a prototype in the egg [1] framework

Willsey, M., et al. "egg: Fast and extensible equality saturation," in Proceedings of the ACM on Programming Languages, vol. 5, no. POPL, pp. 1–29, 2021.[1]
[2]

A B C

D E F

G H I

A

B

D

E

B

C

E

F

D

E

G

H

E

F

H

I

Im2col of a 3x3 input for a 2x2 kernel

28

Term extraction
Benchmark statistics

Unit: 1,000

MobileNetV2 ResMLP ResNet-18 ResNet-50 EfficientNet

Im2Col Im2Col+
SIMPL Im2Col Im2Col+

SIMPL Im2Col Im2Col+
SIMPL Im2Col Im2Col+

SIMPL Im2Col Im2Col+
SIMPL

E-Nodes 50 20 40 8 35 8 45 40 50 20

E-Classes 25 6 20 2.5 25 3 22 20 20 7

Cycles 17 17 15 4 14 4 21 10 16 20

Statistics of saturated E-Graphs (Unit: 1k)

mobilenetv2 resmlp resnet18 e±cientnet resnet50
0

1000

2000

3000

4000

5000

6000

E
xt

ra
ct

io
n

T
im

e
(m

s)

Term Extraction Time
(im2col only)

mobilenetv2 resmlp resnet18 e±cientnet resnet50
0

1000

2000

3000

4000

5000

6000

E
xt

ra
ct

io
n

T
im

e
(m

s)

(im2col + simpl)

29
Mike H., et al, "Improving Term Extraction with Acyclic Constraints," in E-Graph Research, Applications, Practices, and Human-factors Symposium (EGRAPHS'23), 2023.

Term extraction
Evaluation results

Upper: Image-to-column rewrite rule only
Lower: Image-to-column + simplifications including

Operator fusion, reordering, etc.

Optimality is guaranteed by all encodings

WPMAXSAT ILP-ACyc ILP-Topo Overhead

ILP-Topo timeouts (300s)

Solving WPMAXSAT and ILP-ACyc

is ~3x faster than solving ILP-Topo

For a larger input, solving ILP-Topo (previous work) timeouts after
300s while solving WPMAXSAT and ILP-ACyc takes a few seconds

X: Models

Y: End-to-End extraction time (milliseconds)

30

https://www.cs.princeton.edu/~dh7120/assets/papers/EGRAPHS2023.pdf

EGRAPHS’23 Workshop paper

CatsTail: P4 Resource Synthesis using
Equality Saturation

31

Programmable switches

32

Data
Plane

Control Plane

Key Value Action

src_ip DROP

count INCR(num_pkt)

… … …

Key Value Action

src_ip 10.0.1.1 DROP

count 1 INCR(num_pkt)

… … …

10.0.1.1

Match-action tables

Bosshart, Pat, Dan, Daly, Glen, Gibb, Martin, Izzard, Nick, McKeown, Jennifer, Rexford, Cole, Schlesinger, Dan, Talayco, Amin, Vahdat, George, Varghese, David, Walker.
"P4: programming protocol-independent packet processors". SIGCOMM Comput. Commun. Rev. 44. 3(2014): 87–95.

Mapping to programmable switches is hard

33

Parser

Match-action tables

Deparser

// process packets

If match(p.src)

 p.filtered = 0

 p.ciallo = ID

Abstracts away hardware details

Arbitrary computes

Control flows

Any number of logical stages

Fixed-size tables

Fixed-function ALUs

Fixed number of physical stages

Etc…

Doesn’t Fit!
Rewrite your

program

P4 Compiler

Stage 1 Stage 2 Stage 3

Mapping to programmable switches is hard

34

Challenge 1: Limited # of Stages

Challenge 2: Table Dependencies

Challenge 3: Targeting different backends

35

Mapping to programmable switches is hard

+

+

+

+

Stage 1 Stage 2

f1

f2
S

S

f3

R

((f1 + f2) + f3) + f4

Challenge 1: Limited # of Stages

36

Mapping to programmable switches is hard

+

+

+

+

Stage 1 Stage 2

Challenge 1: Limited # of Stages

f1

f2
S1

S2

f4

R

(f1 + f2) + (f3 + f4)
f3

S2

S1

37

Mapping to programmable switches is hard
Challenge 2: Table Dependencies

Table 1

Reads: f1

Table 2

Writes: f1

⋯

Stage X StageY
X < Y

R/W Dependencies

(this example) Write-after-Read
Read-after-Write
Write-after-Write

Challenge 3: Targeting different backends

38

Mapping to programmable switches is hard

// process packets

If match(p.src)

 p.filtered = 0

 p.ciallo = ID

Intel Tofino

Domino

SmartNIC

⋮

P4 Compiler

39

Previous work: CaT

Gao, Xiangyu, Divya, Raghunathan, Ruĳie, Fang, Tao, Wang, Xiaotong, Zhu, Anirudh, Sivaraman, Srinivas, Narayana, Aarti, Gupta. "CaT: A Solver-Aided Compiler for Packet-
Processing Pipelines." Proceedings of the 28th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 3.
Association for Computing Machinery, 2023.

(Sketch synthesis)

40

Previous work: CaT

Gao, Xiangyu, Divya, Raghunathan, Ruĳie, Fang, Tao, Wang, Xiaotong, Zhu, Anirudh, Sivaraman, Srinivas, Narayana, Aarti, Gupta. "CaT: A Solver-Aided Compiler for Packet-
Processing Pipelines." Proceedings of the 28th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 3.
Association for Computing Machinery, 2023.

Our Focus

(Sketch synthesis)

Resource synthesis via Equality Saturation

41

Frontend Transformations Equality Saturation Synthesis Extraction

P4-16
Symbolic
Execution

Path Condition

Field Assignments

Mio IR

Conditional
Assignments

General-purpose
transformations

Algebraic
simplifications

Predicate
identities

Arithmetic
identities

Table-specific
transformations

Conditional lifting

Merging &
Parallelization

If-then-else lifting

Target-dependent
mapping rules

Domino Stateful

Rewrite Rules

Min-depth-min-
cost extraction Valid program

Invalid program

ITE Transformations

Domino Stateless

Tofino Stateful

Tofino Stateless

Seq

SeqTable 1

Table 2 Table 3

Loop-free
programs;

Ifs, assigns

From control flows to
conditional assignment Min-depth-min-cost extraction:

minimizing stage utilization
Rewrite rules addressing

the 3 challenges

42

Frontend transformation

Match Action

K
hdr.f3 = ite(hdr.f2 == 0, e1, e2)

hdr.f4 = ite(hdr.f1 == 0, e3, e4)

Table

K A1 A2

Assign Assign

f3 f4Ite(f2 == 0, e1, e2) Ite(f1 == 0, e3, e4)

43

Frontend transformation
Introduce Table operators to allow table transformations

Seq Par

T1 T2 T1 T2

T1 must be placed before T2 T1 and T2 are put in the same stage

44

Rewrite rules
Challenge 1: Limited resource Challenge 2: Table Dependencies Challenge 3: Different backends

General-purpose program
transformations

?x + ?y => ?y + ?x

(?x + ?y) + ?z <=> ?x + (?y + ?z)

?x + 0 => ?x

~(?x & ?y) => ~?x | ~?y

?x & ?x => ?x

ite(true, ?x, ?y) => ?x

ite(false, ?x, ?y) => ?y

Etc…

Table Transformations

Table parallelization

Subexpression lifting

Table merging

Etc…

Synthesis rewrites

1-1 to sketch grammars in

CaT (Gao et al.)

?x + ?y => alu_add ?x ?y

if mapped(?x) & mapped(?y)

 ?V = ite(?x == ?y, ?x + ?z, ?x) =>

stateful_alu(if, ?V, ?x == ?y, ?x + z, ?x)

if …

52 Rules 10 Rules Tofino: 11 Rules Domino: 21 Rules

Sivaraman, Anirudh, Alvin, Cheung, Mihai, Budiu, Changhoon, Kim, Mohammad, Alizadeh, Hari, Balakrishnan, George, Varghese, Nick, McKeown, Steve, Licking. "Packet Transactions: High-
Level Programming for Line-Rate Switches." Proceedings of the 2016 ACM SIGCOMM Conference. Association for Computing Machinery, 2016.

45

Table transformations

• Explores different topological orders of applying tables

• Parallelizing table placements

• Eliminate table dependencies

Goals:

• Decomposing computations

46

Table transformations
Decomposing computations

Seq

T1 T2
hdr.value = ite(+ C > hdr.f3,

 e1,

 e2)

Lift computes with depth > 3

hdr.f1 + hdr.f2

47

Table transformations

Seq

T1 T2
hdr.value = ite(+ C > hdr.f3,

 e1,

 e2)

Lift computes with depth > 3

hdr.f1 + hdr.f2hdr.tmp =
hdr.tmp

Decomposing computations

48

Seq

T1 T2’

hdr.value = ite(hdr.tmp + C > hdr.f3,

 e1,

 e2)

hdr.tmp = hdr.f1 + hdr.f2;

Seq

T2

Can be done if split computation does not involve global variables

Table transformations
Decomposing computations

49

Synthesis rewrites

Target-dependent rewrite rules
Based on ALU Grammars used for Sketch-guided synthesis in CaT (Gao et al.)

Stateless ALUs Stateful ALUs

Pure computations
May modify a register file in the ALU

(representing global variables)

SKETCH: a Syntax-guided Synthesis-based technique; Program sketches with holes
R. Alur et al., "Syntax-guided synthesis," 2013 Formal Methods in Computer-Aided Design, Portland, OR, USA, 2013, pp. 1-8, doi: 10.1109/FMCAD.2013.6679385.
Solar-Lezama, A. (2009). The Sketching Approach to Program Synthesis. In: Hu, Z. (eds) Programming Languages and Systems. APLAS 2009. Lecture Notes in Computer
Science, vol 5904. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10672-9_3

50

Synthesis rewrites
Stateless ALUs

+

X Y

alu_add

X Y

X and Y are literals or PHV field variable

Inductively defined based on Sketch grammars

Base Case:

X and Y represent stateless ALU computationsInduction Step:

51

Synthesis rewrites
Stateful ALUs

Limitations: a global variable is not read/written by two different tables

Based on Sketch grammars

With conditions that

1. ?gvar is a global variable or 0

2. ?hdrv and ?v2. are PHV fields or constants

ite

?op +

?v1 ?gvar ?v2

?gvar

?gvar

?gvar

?v1 ?v2

SAlu-Ite

?op +

?v1 ?gvar ?v2

?gvar

?gvar

52

Rewrite rules
Efficiently explores the space of candidate mappings by composing the rewrite rules via Equality Saturation

Sivaraman, Anirudh, Alvin, Cheung, Mihai, Budiu, Changhoon, Kim, Mohammad, Alizadeh, Hari, Balakrishnan, George, Varghese, Nick, McKeown, Steve, Licking. "Packet
Transactions: High-Level Programming for Line-Rate Switches." Proceedings of the 2016 ACM SIGCOMM Conference. Association for Computing Machinery, 2016.

General-purpose program
transformations

?x + ?y => ?y + ?x

(?x + ?y) + ?z <=> ?x + (?y + ?z)

?x + 0 => ?x

~(?x & ?y) => ~?x | ~?y

?x & ?x => ?x

ite(true, ?x, ?y) => ?x

ite(false, ?x, ?y) => ?y

Etc…

Table Transformations

Table parallelization

Subexpression lifting

Table merging

Etc…

Synthesis rewrites

1-1 to sketch grammars in

CaT (Gao et al.)

?x + ?y => alu_add ?x ?y

if mapped(?x) & mapped(?y)

 ?V = ite(?x == ?y, ?x + ?z, ?x) =>

stateful_alu(if, ?V, ?x == ?y, ?x + z, ?x)

if …

52 Rules 10 Rules Tofino: 11 Rules Domino: 21 Rules

Extraction

53

Goal: Extract min-depth computation tree

Seq

T1 T2

cost(T1) + cost(T2)

Par

T1 T2

max (cost(T1), cost(T2))

Extraction

54

Goal: Extract min-depth computation tree

Table

Keys A1

max
i

(Cost(Ai))

A2 A3

Extraction

55

Goal: Extract min-depth computation tree

ite (mapped(f(X, Y)), max (Cost(X), Cost(Y)) + 1,∞)

f

X Y

Only allow extracting computations that are already mapped to target backends

Extraction

56

𝒞(𝒫) = Minimum number of stages required to map 𝒫

Solution Exists:

Solution Doesn’t Exist

Evaluations

57

RQ1: Efficiency of CatsTail: synthesis time compared with the previous work CaT (Gao et al.)

RQ2: Efficacy of CatsTail: stage utilization compared with CaT

RQ3: Does the extraction always succeed?

58

RQ1: Efficiency of CatsTail: synthesis time compared with the previous work CaT (Gao et al.)
Evaluations

Experiments setup:

Target Backends: Intel Tofino and Domino (Banzai) ALUs

Input programs: 8 P4 programs with real-word applications, including:

Rewrite Rules:

For the Tofino backend, we enable all the synthesis rewrite

For the Domino backend, we ran two sets of experiments:

1. Full: All synthesis rewrite rules

2. Sk: synthesis rewrite rules corresponding to the sketch grammar

CaT used in their benchmark

Rate control protocol, Packet sampling, Flowlet Switching,

Stateful firewall,Blue increase/decrease, Marple flow

59

RQ1: Efficiency of CatsTail: synthesis time compared with the previous work CaT (Gao et al.)
Evaluations

CatsTail CaT

X: Benchmark cases.

Y: Synthesis time (ms), in log-scale

~an order of magnitude

faster in synthesis

Successfully synthesized

60

Orders of magnitude faster

RQ1: Efficiency of CatsTail: synthesis time compared with the previous work CaT (Gao et al.)
Evaluations

CatsTail-Full

CatsTail-Sk

CaT

CatsTail ran with all rewrite rules

Similar to CatsTail-Full except

the synthesis rules only include those

corresponds to sketches used in CaT

CaT synthesis time

Successfully synthesized

Evaluations

61

Nested ifs not supported by

Tofino switch

RQ2: Efficacy of CatsTail: stage utilization compared with CaT

Same numbers of stage utilization

Evaluations

62

// process packets

If some_func(p.src)

 p.ciallo = 1

else

 P.drop = 1

CatsTail 𝒞(𝒫) = ∞

Incompleteness of general purpose / table transformation rules

RQ3: Does the extraction always succeed?

63

// process packets

If some_func(p.src)

 p.ciallo = 1

else

 P.drop = 1

CatsTail 𝒞(𝒫) = ∞

Unmapped fragmentAuxiliary
rewrites

Populate

Evaluations
RQ3: Does the extraction always succeed?

Evaluations

64

RQ1: Efficiency of CatsTail: synthesis time compared with the previous work CaT (Gao et al.)

RQ2: Efficacy of CatsTail: stage utilization compared with CaT

RQ3: Does the extraction always succeed?

Orders of magnitude faster compared with CaT, thanks to the scalability of egg

Stage utilization is as good as CaT

No, but we can work around

65

https://www.cs.princeton.edu/~dh7120/

assets/papers/COS539Report.pdf

Report
https://github.com/AD1024/CatsTail/

Prototype

https://www.cs.princeton.edu/~dh7120/assets/papers/COS539Report.pdf
https://github.com/AD1024/CatsTail/

Outline

1. Brief introduction to equality saturation

2. Term Extraction for equality saturation (Part A)

3. Applying equality saturation for network resource synthesis (Part B)

4. (If time permits) Ongoing project of invariant synthesis for distributed systems

66

Recent project: PInfer
Learning invariants for distributed systems from traces

67

Trace
Grammar

System

Deployment

Specification
Mining

Model CheckerTrace Data

P Model

Likely
Invariants

Desai, Ankush, Vivek, Gupta, Ethan, Jackson, Shaz, Qadeer, Sriram, Rajamani, Damien, Zufferey. "P: safe asynchronous event-driven programming." Proceedings of the 34th
ACM SIGPLAN Conference on Programming Language Design and Implementation. Association for Computing Machinery, 2013.

Recent project: PInfer
Learning invariants for distributed systems from traces

68

Trace
Grammar

System

Deployment

Specification
Mining

Model CheckerTrace Data

P Model

Likely
Invariants

Desai, Ankush, Vivek, Gupta, Ethan, Jackson, Shaz, Qadeer, Sriram, Rajamani, Damien, Zufferey. "P: safe asynchronous event-driven programming." Proceedings of the 34th
ACM SIGPLAN Conference on Programming Language Design and Implementation. Association for Computing Machinery, 2013.

Recent project: PInfer
Learning invariants for distributed systems from traces

69

Trace
Grammar

System

Deployment

Specification
Mining

Model CheckerTrace Data

P Model

Likely
Invariants

Invariant Refinement

Refined
Invariants

Desai, Ankush, Vivek, Gupta, Ethan, Jackson, Shaz, Qadeer, Sriram, Rajamani, Damien, Zufferey. "P: safe asynchronous event-driven programming." Proceedings of the 34th
ACM SIGPLAN Conference on Programming Language Design and Implementation. Association for Computing Machinery, 2013.

Invariant learning: Related works

70

Enumerate combinations of

predicates and connectives

DistAI DuoAI SWISS PInfer

Travis Hance, Marĳn Heule, Ruben Martins, Bryan Parno. "Finding Invariants of Distributed Systems: It's a Small (Enough) World After All." 18th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 21). USENIX Association, 2021.

Jianan Yao, Runzhou Tao, Ronghui Gu, Jason Nieh. "DuoAI: Fast, Automated Inference of Inductive Invariants for Verifying Distributed Protocols." 16th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 22). USENIX Association, 2022.

Jianan Yao, Runzhou Tao, Ronghui Gu, Jason Nieh, Suman Jana, Gabriel Ryan. "DistAI: Data-Driven Automated Invariant Learning for Distributed Protocols." 15th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 21). USENIX Association, 2021.

{
Invariants

about states (Ivy-style)

Invariants about
messages / eventsIvy

Protocol Definition +

Invariants checking

K. McMillan, O. Padon, "Ivy: A Multi-modal Verification Tool for Distributed Algorithms," in Computer Aided Verification: 32nd International Conference, CAV 2020, Los Angeles, CA, USA, July 21–
24, 2020, Proceedings, Part II, 2020, pp. 190–202.

Invariant learning

71

PInfer

Challenges:

Brute-force enumeration leads to vacuously true/false invariants, which are not useful for production systems

Trace Grammar that focuses useful predicates

1. Huge search space: many valid predicates over events and payloads

2. Efficiency: enumerating logical connectives is computationally computationally intractable

Formulate invariant learning as a boolean function learning problem

Q & A

72

