Ranking Formal Specifications
using LLMs

Mike He, Zhendong Ang, Ankush Desai, Aarti Gupta

SPLASH/LMPL’25, October 15

Impl E Spec
|

The heart of formal reasoning

-

_

{’@ﬁ Hardware

request |= ##[1:3] ack

~

Impl E Spec

/

-

_

Distributed Systems

forall t: Txn.
I (t.commit & t.abort)

~

%

Impl E Spec

Client Server Database
~~~~~ {‘/}e/? C
\"‘6:?"5’82‘ Distributed Systems
hh forall t: Txn.
C%%b | I (t.commit & t.abort)
~~~~~~ /77/596
~~~~~~ Q‘/@Sz‘
Se
mm\tReSp(—)—n ="
comM .-~
s€ —
. ReSPOQ——"
WL e

—"
-



Impl E Spec

Correspondence
WriteRequest<------===========-" > CommitRequest

T N A"

Liveness Progress

<
k\
¥

<

WriteResponse<--------=-====-"~ *CommitResponse
Atomicity



Dynamic trace-based techniques for mining specifications

4 ) Ek

Likely Invariants
Hold across ALL traces

Execution Traces




Dynamic trace-based techniques for mining specifications

%

Likely Invariants

Too many of them!



Dynamic trace-based techniques for mining specifications

Too many of them!
e.g., for the Raft 'l protocol:

Dinv [2]: =1M properties from state traces

Pinfer [3]: =100 properties from message logs |
Likely Invariants

New challenge for developers using these tools

Identifying meaningful specifications

1]: D. Ongaro, J. Ousterhout, "In Search of an Understandable Consensus Algorithm," in 2074 USENIX Annual Technical Conference (USENIX ATC 14), 2014, pp. 305-319.
2]: S. Grant, H. Cech, |. Beschastnikh, "Inferring and asserting distributed system invariants," in Proceedings of the 40th International Conference on Software Engineering, 2018, pp. 1149-1159.

3]: GitHub - p-org/P at experimental/pinfer — github.com



Potential approaches for identifying meaningful specifications

Meaningful Specs?  Scalable?

Hire an expert x

Deductive verifiers —

Model checking

LLMs? ? ?
i4: Yes
—: To some degree

X:No

We aim to investigate these two aspects



~~~~~~i?eqé/
NS
nse ..

Server

Background: P modeling language (:r

Database

// Client machine

machine Client {
var server: Server;

start state SendRequest {

entry {
send server, WriteRequest, (reqld=genId(), client=this, key=someKey, value=someValue);

goto WaitForResponse;

}

}
state WaitForResponse { ... }

}

// Server machine
machine Server {
var database: Database;

start state Serving {
on WriteRequest do (payload: (reqld: tId, client:Client, key:string, value:int)) {

send database, CommitRequest, payload;

}
on CommitResponse do (result: (reqld: tId, status:Status, client:Client)) {

1f (result.status == COMMITTED)
send result.client, WriteResponse, (reqld=result.reqld, success=true);

else
send result.client, WriteResponse, (regld=result.reqld, success=false);

}
}
}

// Database machine (not shown)

10

Background: Specifications over messages <r

Client Server Database
..... f{z‘?i?e%/ Ve, : WriteRequest, e; : WriteResponse .
L Csy
e,.reqld = e, .reqld — e, < e,
Co
~~~~~ /77/77/[‘/?6
~~~~~~ Tesy Ve, : WriteResponse . de; : WriteRequest .
~ e <eyNey.reqld = e .reqgld
onse
mitRESE.- -
comm__.---
s€ | '
. RGSPO()——"
WAt
Jhises

< denotes the traditional happened-before relation

11

What is a meaningful specification ?

A

Specification

%

Golden set

Yes

a critical | Excludes

behavior?

bad states?

Developer

No/

tially No/Partially No/Partially

v

Lower priority

12

Rating Framework

Four-metric rating framework

Is It
a critical Excludes
behavior? bad states?

Visibility

How directly a
violation is visible
to end users

Deprioritize specs that Deprioritize
may cause false violations specs that may allow
bad behaviors

13

What is a meaningful specification ?

Client Server Database
..%72‘@/?
59y
Q/ """" 4
Criticalit . . h
Y Ve, : WriteResponse, e, : WriteResponse . /?00/77,77,
... e {4
e,.reqld = e, .reqld — e, . status = e, . status ey
Distinguishabilityy Consistency of committed writes ,
com™
ReSPOn_S_e.—
se| .--=7"
. Respon,—]
WAt e

Visibility

“
“
-

14

What is a meaningful specification ?

Server Database
~. QC/@
-[Yes
Criticality o
Ve, : CommitResponse, e, : CommitResponse . . /98927’77/}
Q/ e .reqld = e, .reqld > ey=¢, | | Tl oSt
Distinguishability Uniqueness of commit response)
per request comm!
ReSPOnSe.—

=
-—
—
%
®
N
O
O
D
N
®
'
'
'
'
'
'
'
'
'

Visibiity ¥ WL

“
“
-

15

What is a meaningful specification ?

Model summary

Few- shot

\ examples
Criticality

Distinguishability LLM-as-a-judge

Visibility Overall score:

Confidence scores in [0, 1]

C(p)

D(¢)

V(@)

S(p) = 4 -1/ G(@) - C(p) + 4, - D(@) + 13 - V()

16

Benchmarks

Protocols:
14 distributed protocols, including 11 from established works and 3 from proprietary services

Input specifications (for ranking):
Specifications learned by PInfer (and Model Checked against P models)

Goal specifications:
Established works: taken from the original papers (e.g., The Part-Time Parliament [']);
Proprietary protocols: written by development teams

[1] Lamport, L. (1998). The part-time parliament. ACM Trans. Comput. Syst., 16(2), 133—169.

17

Benchmarks Setup

Evaluation Criteria:
Take the top-k ranked input specifications, and check the coverage against the goals

S() =41 G(P) - C(@) + 2y - D(P) + 13- V()
0.8 0.1 0.1

18

Established

protocols

Proprietary

protocols

Preliminary Results of Ranking with LLMs

Each colored cell:
#covered/#goals (Pass@1)

input specs Top-k

k=10 k=20 k=30 k=40 k=50 Cost

2PC (46) ZILi 2/2 2/2 2/2 $0.07
. e

Chain (33) 3/5 5/5 Y o S P, il Hiiie fo) $0.15
Raft (58) 3/5 5V) S/ DD 5/5 $0.12
Toy Consensus (28) 1/1 1/1 1/1 1/1 1/1 $0.07
Distributed Lock (76) 1/1 1/1 1/1 1t i $0.20
Whitelist (40) 1/1 1/1 1/1 1/1 1/1 $0.07
Lock Server (35) 1/1 11741 1L 1l 1/1 $0.08
Paxos (46) 747 2/2 2/2 2/2 2/2 $0.11
Ring Leader (27) 15741 1/1 1/1 1/1 /i $0.08
Sharded KV (19) 147l 1/1 1/1 1l i $0.06
Vertical Paxos (94) 212 2/2 2/2 2/2 2/2 $0.21
ClockBound (37) 2/3 3/3 3/3 3/3 3/3 $0.09
DynamoDB-LE (54) 1/5 1/5 3/5 3/5 5/5 $0.15
2PC-CC (89) 2/7 3/7 5/7 T 747 $0.26
Overall 23/37 | 29/37 | 33/37 | 35/37 | 37/37 | $1.71
Coverage (%) 62.2% (78.4% | 89.2% | 94.6% (100.0%| -

_ All goals are covered in
top-10 ranked specifications

19

Comparisons to Baseline Ranking Approach

Baseline:
Ranks specification formulas by Term Frequency
(lowest to highest), treating predicates as “words”.

\ LLM achieves full coverage at k=50 (as

shown in the previous slide)

—
BN

[
N

=
o

full coverage @ k=100

00

The baseline approach reaches
bottleneck around k=60

6 full coverage @ k=50

2 ours
Baseline

Where does baseline get stuck?

Number of benchmarks fully covered

o
=

10 20 30 40 50 60 70 80 90 100
Number of Specifications (Top-k)

Figure 4. Number of benchmarks whose target specifications
are all found within top-k using difterent approaches.

Comparisons to Baseline Ranking Approach

Known Specification Ranking Distribution

Ours
Baseline

“ T

60

Ranking distribution (for benchmarks with
multiple specifications)

Ranking
S
._|
-

Vertical Paxos (94) 2PC-CC (89)

Baseline struggled with Vertical Paxos
and the proprietary 2PC-CC protocols

- B ,
20 é lt T & . - J_ E_

Reason: predicate frequency can fail to capture

(a) Ranking distributions of the target specifications .
semantics of the formula to the protocol

21

Summary and Proposed Future Efforts

Hopefully I convinced you that...

Meaningful Specs? Scalable?

LLMs

Bonus: “soundness” is guaranteed (by the mining algorithms)

22

Summary and Proposed Future Efforts

How can this whole thing be important?
Helps identify the specifications from a large, noisy set
Can be useful in verified program synthesis with LLMs

Extending to program verification by identifying (mutually) inductive invariants

How can we make it better?

Refine the rating framework for domain-specific tasks
Tune Hyper-parameters for computing overall scores (to better align with ground truth)

Integrate to a verification workflow (e.g., with PVerifier[®. 211) after identifying important specs.

[1] https://github.com/p-org/P
[2] Mora, F., Desai, A., Polgreen, E., & Seshia, S. (2023). Message Chains for Distributed System Verification. Proc. ACM Program. Lang., 7(OOPSLA2).

23

Q&A

More about the P ecosystem: p-org.github.io/P/

Prompts in the P repo: experimental/pinfer/Src/Plnfer/Scripts

Position paper: dl.acm.org/doi/10.1145/3759425.3763386

24

https://p-org.github.io/P/
https://github.com/p-org/P/tree/experimental/pinfer/Src/PInfer/Scripts
http://dl.acm.org/doi/10.1145/3759425.3763386

Backup Slides: Ranking with Vanilla LLM?

Model: Claude Sonnet 4

Established Protocols (Pass @ 1):

Our workflow: 9/11T

Our workflow: 2/11

!

25

Backup Slides: Ranking with Vanilla LLM?

Model: Claude Sonnet 4

Proprietary Protocols (Pass @ 1):

Our workflow: 3/3 f Our workflow: 0/3

!

26

Backup Slides: Example Prompts

Prompt of the description of the Ranking Framework

<scoring_metrics>

<generalization_score>

<definition>Measures likelihood that specification holds on ALL possible executions (0.0 to 1.0)</definition>
<scoring_guidelines>

Score 1.0: Universal correctness property that applies to every possible execution

Score 0.5-0.9: Generally applicable with reasonable constraints

Score 0.0: Non-generalizable, can relate irrelevant events across different contexts

<example_high_score>
Specification: ve0: eAbortTrans vel: eCommitTrans :: (e0.payload.transld != e1.payload.transld)
Score: 1.0

Reasoning: This is universally true - abort and commit can never occur for the same transaction in ANY execution
</example_high_score>
<example_medium_score>

<example_low_score>

27

Backup Slides: Example Prompts

Prompt of specification formula syntax and semantics

Here is the description of Plnfer specifications:

<pinfer_specifications>

Specifications discovered by PlInfer are first-order logic formulas over P events. The formulas are in the form
of v+3* (i.e., at least 1 forall-quantified variable and O or more existentially quantified variables).

<synax_of_pinfer_specifications>

</synax_of_pinfer_specifications>
<semantics_of_specifications>

</semantics_of_specifications specifications>
</pinfer_specifications>

28

Backup Slides: Example Prompts

Prompt of the Task

<task_overview>

Plnfer learns specifications from event traces. Your job is to:

1. Analyze each specification's properties

2. Score it across four metrics: Generalization, Criticality, Distinguishability, and Visibility
3. Rank specifications from highest to lowest score

4. Output the top-k specifications as requested

</task_overview>

<common_mistakes_to_avoid>

- Don't assign high generalization scores to specifications without meaningful payload relationships
- Don't overvalue trivial temporal orderings that are implementation artifacts

- Don't ignore the real-world impact of violations on end users

- Don't score based on specification complexity rather than importance

- Don't assume all specifications with similar syntax have similar importance
</common_mistakes_to_avoid>

29

Thank you!

More about P and PVerifier: p-org.github.io/P/advanced/psemantics/

Prompts in the P repo: experimental/pinfer/Src/Plnfer/Scripts

Position paper: dl.acm.org/doi/10.1145/3759425.3763386

30

https://p-org.github.io/P/advanced/psemantics/
https://github.com/p-org/P/tree/experimental/pinfer/Src/PInfer/Scripts
http://dl.acm.org/doi/10.1145/3759425.3763386

