
SPLASH/LMPL’25, October 15

Ranking Formal Specifications
using LLMs
Mike He, Zhendong Ang, Ankush Desai, Aarti Gupta

Impl ⊧ Spec

2

The heart of formal reasoning

Impl ⊧ Spec

Hardware

request |=> ##[1:3] ack

Code

{P} S {Q}

Distributed Systems

forall t: Txn.
!(t.commit & t.abort)

🧐

What’re my
specs?

3

⚙ 💻 ☁

Client Server DatabaseWriteRequest

CommitRequest

WriteResponse
CommitResponse

Impl ⊧ Spec

Distributed Systems

forall t: Txn.
!(t.commit & t.abort)

4

☁

👩💻 🖥 ☁

Impl ⊧ Spec

WriteRequest CommitRequest

CommitResponseWriteResponse

Liveness

Atomicity

Progress

Correspondence

🤯

5

6

Execution Traces

Mining
Algorithm

Likely Invariants
Hold across ALL traces

e.g.,

Dynamic trace-based techniques for mining specifications

7

Likely Invariants

Too many of them!

Dynamic trace-based techniques for mining specifications

8

Likely Invariants

Too many of them!

Dinv [2]: ≈1M properties from state traces

PInfer [3]: ≈100 properties from message logs

[2]: S. Grant, H. Cech, I. Beschastnikh, "Inferring and asserting distributed system invariants," in Proceedings of the 40th International Conference on Software Engineering, 2018, pp. 1149–1159.
[3]: GitHub - p-org/P at experimental/pinfer –- github.com

e.g., for the Raft [1] protocol:

[1]: D. Ongaro, J. Ousterhout, "In Search of an Understandable Consensus Algorithm," in 2014 USENIX Annual Technical Conference (USENIX ATC 14), 2014, pp. 305–319.

New challenge for developers using these tools
Identifying meaningful specifications

Dynamic trace-based techniques for mining specifications

Potential approaches for identifying meaningful specifications

9

Scalable?

Model checking

Deductive verifiers

➖

❌

Meaningful Specs?

➖

LLMs? ❓ ❓

We aim to investigate these two aspects

➖

✅: Yes
➖: To some degree
❌: No

Hire an expert ❌✅

10

Background: P modeling language

Client Server DatabaseWriteRequest

CommitRequest

WriteResponse
CommitResponse

👩💻 🖥 ☁

Background: Specifications over messages

11

∀e0 : WriteRequest, e1 : WriteResponse .

e0 . reqId = e1 . reqId → e0 ≺ e1

∀e0 : WriteResponse . ∃e1 : WriteRequest .

e1 ≺ e0 ∧ e0 . reqId = e1 . reqId

Client Server DatabaseWriteRequest

CommitRequest

WriteResponse
CommitResponse

👩💻 🖥 ☁

≺ denotes the traditional happened-before relation

12

What is a meaningful specification ?

Developer

Specification

Is it
correct?

Is it
a critical

behavior?
Excludes

bad states?
Client

visibility?

Yes

No

🗑

Yes Yes

No/Partially

Lower priority

No/Partially No/Partially

Yes

Golden set

13

Rating Framework

Is it
correct?

Is it
a critical

behavior?
Excludes

bad states?
Client

visibility?

Generalizability
How much does the

specification
generalizes to

unseen (correct)
behaviors

Criticality

How severe is a
specification violation
(e.g., service outage)

Distinguishability
How well does a

specification
separates good and

bad behaviors

Visibility

How directly a
violation is visible

to end users

Four-metric rating framework

Deprioritize specs that
may cause false violations

Deprioritize
specs that may allow

bad behaviors

14

What is a meaningful specification ?

Generalizability

Criticality

Distinguishability

Visibility

Client Server Database
WriteRequest

Commit Request

WriteResponse

Commit

Response

👩💻 🖥 ☁

∀e0 : WriteResponse, e1 : WriteResponse .
e0 . reqId = e1 . reqId → e0 . status = e1 . status

Consistency of committed writes

15

What is a meaningful specification ?

Generalizability

Criticality

Distinguishability

Visibility

∀e0 : CommitResponse, e1 : CommitResponse .
e0 . reqId = e1 . reqId → e0 = e1

Client Server Database
WriteRequest

Commit Request

WriteResponse

Commit

Response

👩💻 🖥 ☁

Uniqueness of commit response
per request

16

What is a meaningful specification ?

Generalizability

Criticality

Distinguishability

Visibility

🤖🔨
LLM-as-a-judge

G(ϕ)

C(ϕ)

D(ϕ)

V(ϕ)

ϕ
Confidence scores in [0, 1]Model summary

&
Few-shot
examples

S(ϕ) = λ1 ⋅ G(ϕ) ⋅ C(ϕ) + λ2 ⋅ D(ϕ) + λ3 ⋅ V(ϕ)

Overall score:

17

Benchmarks

Protocols:
14 distributed protocols, including 11 from established works and 3 from proprietary services

Goal specifications:
Established works: taken from the original papers (e.g., The Part-Time Parliament [1]);
Proprietary protocols: written by development teams

[1] Lamport, L. (1998). The part-time parliament. ACM Trans. Comput. Syst., 16(2), 133–169.

Input specifications (for ranking):
Specifications learned by PInfer (and Model Checked against P models)

Goal specifications:
Established works: taken from the original papers (e.g., The Part-Time Parliament [1]);
Proprietary protocols: written by development teams

Input specifications (for ranking):
Specifications learned by PInfer (and Model Checked against P models)

18

Benchmarks Setup

Evaluation Criteria:
Take the top-k ranked input specifications, and check the coverage against the goals

S(ϕ) = λ1 ⋅ G(ϕ) ⋅ C(ϕ) + λ2 ⋅ D(ϕ) + λ3 ⋅ V(ϕ)
0.8 0.1 0.1

Some highlights:

19

Preliminary Results of Ranking with LLMs

Established
protocols

Proprietary
protocols

input specs Top-k

Each colored cell:
#covered/#goals (Pass@1)
All goals are covered in
top-10 ranked specifications

1. All specifications are covered within top-50

2. Many are covered within top-10 (60%+)

3. Costs are negligible

20

Comparisons to Baseline Ranking Approach

LLM achieves full coverage at k=50 (as
shown in the previous slide)

The baseline approach reaches
bottleneck around k=60

Where does baseline get stuck?

Baseline:
Ranks specification formulas by Term Frequency
(lowest to highest), treating predicates as “words”.

21

Comparisons to Baseline Ranking Approach

Ranking distribution (for benchmarks with
multiple specifications)

Baseline struggled with Vertical Paxos
and the proprietary 2PC-CC protocols

Reason: predicate frequency can fail to capture
semantics of the formula to the protocol

22

Summary and Proposed Future Efforts

Scalable?Meaningful Specs?

LLMs ☑ ☑

Hopefully I convinced you that …

Bonus: “soundness” is guaranteed (by the mining algorithms)

23

Summary and Proposed Future Efforts

How can this whole thing be important?

How can we make it better?

Can be useful in verified program synthesis with LLMs

Helps identify the specifications from a large, noisy set

Extending to program verification by identifying (mutually) inductive invariants

Tune Hyper-parameters for computing overall scores (to better align with ground truth)

Refine the rating framework for domain-specific tasks

Integrate to a verification workflow (e.g., with PVerifier[1, 2]!) after identifying important specs.

[2] Mora, F., Desai, A., Polgreen, E., & Seshia, S. (2023). Message Chains for Distributed System Verification. Proc. ACM Program. Lang., 7(OOPSLA2).
[1] https://github.com/p-org/P

24

Q & A
More about the P ecosystem: p-org.github.io/P/

Prompts in the P repo: experimental/pinfer/Src/PInfer/Scripts

Position paper: dl.acm.org/doi/10.1145/3759425.3763386

https://p-org.github.io/P/
https://github.com/p-org/P/tree/experimental/pinfer/Src/PInfer/Scripts
http://dl.acm.org/doi/10.1145/3759425.3763386

25

Backup Slides: Ranking with Vanilla LLM?

Model: Claude Sonnet 4

Established Protocols (Pass @ 1):

Covered within top-10
(6/11)

2PC, Toy Consensus,
Distributed Lock, Lock Server,

Sharded KV, Ring Leader Election

Not covered within top-10
(5/11)

Chain (3/5) Raft (3/5)
Firewall (0/1) Paxos (1/2)

Vertical Paxos (1/2)

Our workflow: 9/11 Our workflow: 2/11↑ ↓

↑ ↓

26

Backup Slides: Ranking with Vanilla LLM?

Model: Claude Sonnet 4

Covered within top-50
(1/3)

ClockBound

Not covered within top-50
(2/3)

2PC-CC (4/7)
DynamoDB-LE (1/5)

Proprietary Protocols (Pass @ 1):

Our workflow: 3/3
↑ ↓

Our workflow: 0/3

↑ ↓

27

Backup Slides: Example Prompts

<scoring_metrics>

<generalization_score>

<definition>Measures likelihood that specification holds on ALL possible executions (0.0 to 1.0)</definition>

<scoring_guidelines>

Score 1.0: Universal correctness property that applies to every possible execution

Score 0.5-0.9: Generally applicable with reasonable constraints

Score 0.0: Non-generalizable, can relate irrelevant events across different contexts

Prompt of the description of the Ranking Framework

<example_high_score>

Specification: ∀e0: eAbortTrans ∀e1: eCommitTrans :: (e0.payload.transId != e1.payload.transId)

Score: 1.0

Reasoning: This is universally true - abort and commit can never occur for the same transaction in ANY execution

</example_high_score>

<example_medium_score>

….

<example_low_score>

…

28

Backup Slides: Example Prompts

Here is the description of PInfer specifications:

<pinfer_specifications>

Specifications discovered by PInfer are first-order logic formulas over P events. The formulas are in the form
of ∀+∃* (i.e., at least 1 forall-quantified variable and 0 or more existentially quantified variables).

<synax_of_pinfer_specifications>

…

</synax_of_pinfer_specifications>

<semantics_of_specifications>

…

</semantics_of_specifications specifications>

</pinfer_specifications>

Prompt of specification formula syntax and semantics

29

Backup Slides: Example Prompts

<task_overview>

PInfer learns specifications from event traces. Your job is to:

1. Analyze each specification's properties

2. Score it across four metrics: Generalization, Criticality, Distinguishability, and Visibility

3. Rank specifications from highest to lowest score

4. Output the top-k specifications as requested

</task_overview>

Prompt of the Task

<common_mistakes_to_avoid>

- Don't assign high generalization scores to specifications without meaningful payload relationships

- Don't overvalue trivial temporal orderings that are implementation artifacts

- Don't ignore the real-world impact of violations on end users

- Don't score based on specification complexity rather than importance

- Don't assume all specifications with similar syntax have similar importance

</common_mistakes_to_avoid>

30

Thank you!
More about P and PVerifier: p-org.github.io/P/advanced/psemantics/

Prompts in the P repo: experimental/pinfer/Src/PInfer/Scripts

Position paper: dl.acm.org/doi/10.1145/3759425.3763386

https://p-org.github.io/P/advanced/psemantics/
https://github.com/p-org/P/tree/experimental/pinfer/Src/PInfer/Scripts
http://dl.acm.org/doi/10.1145/3759425.3763386

