PINFER: Automatically Learning Specifications for
Distributed Systems from Event Traces

Ankush Desai*
Sharad Malik"

Mike He'

Aishwarya Jagarapu®

Doug Terry
Aarti Gupta'

'Princeton University *Amazon Web Services

Abstract

Reasoning about the correctness of distributed systems is a
significant challenge, with precise correctness specifications
serving as an essential prerequisite. However, identifying
and formulating these specifications remains a major hurdle
for developers in practice. PINFER addresses this challenge by
automatically learning these specifications from observable
event traces of messages exchanged in distributed systems.
PINFER uses a specialized grammar for the target specifi-
cations based on events, including support for forall-exists
(V3) quantifiers over events that is essential for capturing
specifications of complex protocols. It uses a novel learn-
ing procedure where a grammar-based enumerative search
provides effective control over the scope of dynamic learn-
ing from event traces. We evaluated PINFER on well-known
distributed protocols as well as industrial case studies. Our re-
sults demonstrate that for these benchmarks PINFER success-
fully learns the important protocol specifications, including
several inductive invariants useful for verification.

1 Introduction

Developers of distributed systems face the daunting chal-
lenge of reasoning about system correctness in the presence
of myriad interleavings of messages and potential failures.
Even before attempting to reason about correctness, a fun-
damental challenge emerges — the formulation and compre-
hension of correctness specifications themselves. These speci-
fications, expressed as safety or liveness properties, serve as
the essential foundation for the validation approaches used
across industry or academia, from lightweight testing [14, 44,
58] or state space exploration via model checking [12, 22, 30],
to formal proofs using theorem proving [23, 36, 45, 46, 51]
or deductive verification [20, 41, 42, 57]. The importance
of formal specifications is well-recognized in industry prac-
tice [5, 8, 32, 39] as they serve dual purposes: as important
artifacts against which system behavior can be validated, and
for providing valuable insights into how the system behaves
under various inputs and failures.

Existing techniques for testing or verification of distributed
systems operate under the assumption that specifications are
provided a priori by users, thereby transferring the burden
of producing comprehensive specifications to the develop-
ers. Through our extensive experience using the P model-
ing framework [3, 12] to reason about the correctness of

industry-strength distributed services at AWS, we have con-
sistently observed that the formulation of correctness specifi-
cations constitutes the most significant and time-consuming
challenge encountered by service teams. PINFER aims to
mitigate this burden on developers by inferring protocol
specifications for distributed systems with minimal user in-
tervention.

1.1 Motivation for our work

Prior research on specification learning can be categorized
into two principal approaches. The first encompasses verifier-
aided invariant synthesis (e.g., SWISS [18], DuoAlI [55]) that
generate inductive invariants to verify safety properties us-
ing deductive verification frameworks [42, 50]. While these
approaches are automated and powerful in principle, their
practical application is constrained by the requirements for
user-provided safety properties, source models expressed in
decidable logic fragments, and inherent limitations in verifier
performance and scalability. The second category comprises
data-driven dynamic learning (e.g., Dinv [16], LIDO [52]) that
learn safety properties and invariants by analyzing execution
traces of global system states. Although these approaches of-
fer enhanced scalability, they exhibit significant limitations
in expressivity — particularly in handling complex quan-
tification patterns such as V3-quantifiers — and frequently
necessitate substantial user intervention [16]. Confronted
with these limitations, we asked the question: Can we develop
an automated framework for learning specifications of complex
protocols, without the constraints imposed by decidable logic
models, verifiers, or reduced expressivity?

This paper presents PINFER that answers this question in
the affirmative. We identified two additional design princi-
ples as requirements satisfied by PINFER, for it to be appli-
cable in practice and scalable for real-world distributed sys-
tems. First R1: PINFER learns protocol specifications deemed
important by system builders in practice, capturing a wide
range of protocol specifications for real-world distributed
systems (examples are shown in Table 4, §6). Second, R2:
PINFER is agnostic to the system implementation and devel-
opment languages, and treats the system and its components
as black boxes with externally observable behavior that is
exhibited in traces of messages exchanged in a distributed
system. This allows PINFER to be applied in many settings
where the traces can be generated from any stage of the de-
velopment cycle, e.g., by a model checker used during design

analysis, collected from test infrastructure when testing the
implementation, or extracted from production service logs.

1.2 PINFER: Key Ideas

There are two key insights that enable PINFER to address our
motivating question and these design requirements.

(1) Learn protocol specifications over messages. The first
insight is that most protocol specifications for distributed sys-
tems can be formulated over messages using (restricted) first-
order logic (FOL). These formulations employ quantifiers
(V, V3) and standard predicates (including equality, numer-
ical comparisons, and temporal relations such as happens-
before [29]) to define relationships between messages. We
refer to a message exchanged in a distributed system as an
event, which has an accompanying data payload.

Table 1 shows example specifications of well-known pro-
tocols expressed over events and their payload fields. For ex-
ample, the External Consistency of Google Spanner [10] says
that if a transaction commits before another transaction
starts, then its commit timestamp is less than the commit
timestamp of the other transaction. This is expressed as a
formula in terms of two eCommit events (ey and e;) that are
sent when a transaction commits, where the if-then formis
expressed by an implication (—) between two subformulas.
Note that the subformulas use standard arithmetic operators
(<) over the fields of the event payloads, and the quantifiers
(V) on events indicate that this formula must hold over all
possible pairs of events ey and e; in a trace of the system.
The other specifications are described in detail later (§3.1).
In cases where exposing some internal state is required, a
user can make relevant state visible in event payloads.

(2) Structure of specifications. Our second insight is that
a protocol specification over events can be decomposed into
the following parts (as marked in Table 1): (1) events over
which the specification quantifies, (2) Guards G capturing
control conditions, (3) Witness W (optionally) capturing the
existence of certain events, and (4) Hypotheses H stating con-
ditions that must hold under the Guards and the Witnesses.
For instance, the Whitelist Safety specification of a Firewall
protocol [38] in Table 1 is defined over eRecv (receiving) and
eGrant (granting) events. The Guard G states the control
condition for allowing the event to be received. The Witness
W, e; < ey with the traditional happens-before [29] relation
(<), states that when receiving is allowed, then there must
exist some granting event that happened before. Finally, the
Hypotheses H states that an earlier granting event must have
granted the permission to the sender. This structure enables
PINFER to effectively learn specifications by a novel combi-
nation of static enumerative search (over events involved
in the specifications, G,W) and dynamic learning (to learn
H). Furthermore, explicitly identifying Witnesses enables
PINFER to learn specifications with quorum constraints on
the number of witnesses (e.g., Quorum Votes in Table 1).

1.3 Results and Contributions

We have implemented PINFER as a part of the P model-
ing framework [3, 12], leveraging Daikon [13] for dynamic
learning. We constructed a suite of benchmarks with 11
well-known protocols and 3 proprietary industrial case stud-
ies written in P. We use 43 known safety specifications of
these protocols as a challenge set of protocol specifications
for evaluating PINFER, including specifications for Lineariz-
ability [21] and Snapshot Isolation [6]. Our evaluations (§6)
shows that, without any user guidance or hints, specifications
learned by PINFER can cover 28 of the 43 protocol specifi-
cations. The remaining 15 can be learned with light-weight
user guidance (discussed in detail in §6). Most of these speci-
fications learned by PINFER are beyond the scope of existing
approaches. PINFER can also learn important specifications
that were missed by the developers — these are important
in the development process when designing new protocols
or refactoring reference implementations for improving per-
formance or adding new features, as these provide insights
into the behavior of the system. Additionally, PINFER learns
inductive invariants of several well-known protocols that
were provided manually in a downstream verifier [38].

Contributions. We summarize our contributions as follows:

(1) We present PINFER, the first largely automated specifica-
tion learning framework that learns a rich class of expressive
protocol specifications from event traces, with support for
temporal relations between events, predicates over event
payloads, nested V3 quantifiers, and quorum constraints.

(2) The learning procedure in PINFER is a novel combination
of static enumerative search that allows fine-grained control
on the scope of dynamic learning on event traces.

(3) We evaluated PINFER on a suite of benchmarks with well-
known and proprietary protocols. Our evaluation shows that
PINFER can learn complex specifications of these protocols,
discover new specifications missed by the developers, and
find inductive invariants that were manually provided previ-
ously for verification by a downstream verifier.

2 Overview of PINFER Framework

In this section, we introduce the P language with a running
example, provide an overview of the specification formula
template used in PINFER, and then present the workflow for
learning specifications from event traces.

2.1 Background: P Modeling Language

P [3, 12] is a state-machine-based programming language
designed for formal modeling and analysis of distributed
systems. It enables developers to model system designs as
collections of communicating state machines, facilitating
checking of both safety and liveness properties. For instance,
Amazon Web Services (AWS) used P to validate the strong
consistency protocol in Amazon S3 [8], gaining confidence
in its correctness during the transition from eventual to

Table 1. Example specifications expressed as formulas over events, with , [Witnesses Wj, Hypotheses H

Specification Description

Specification Formula

External Consistency (Spanner [10])
Election Safety (Raft [40])

Vep, e1 : eCommit.‘ eg.commit < ej.start ‘ — eg.ts < ejy.ts

Veo, e1 : eElected.‘ eo.term = eq.term ‘ — eg.leader = ey.leader

Update Prop. (Chain Replication [49]) | Ve, eq : eNodeLog,‘ €.pos < e1.pos ‘ — ej.log =y ep.log

Whitelist Safety (Firewall [38])

Quorum Votes (Consensus [37])

Veg : eRecv.| eg.allowed = T | — Tey : eGrant.[e] 74&?@] A eg.src = ej.host

Ve : eDecide. 3> quorume : eVote. [671 ,<,‘3,()] A eg.ballot = eq.vote

strong consistency. Similarly, DeepSeek employed P to check
the correctness of the Fire-Flyer File System (3FS), a high-
performance distributed file system [4], showcasing its ef-
fectiveness in analyzing complex distributed systems.

2.2 Example: Ring Leader Election protocol

A P program comprises state machines communicating asyn-
chronously with each other using events accompanied by
typed data values. Each machine has an input buffer, event
handlers that are executed on receiving an event, and a local
store. The machines run concurrently, receiving and sending
events, creating new machines, and updating the local store.

We use the well-known Ring Leader Election protocol [9]
as our running example. In this protocol, nodes are arranged
in a ring topology and assigned a unique, totally ordered
identifier (id). To initiate the leader election, each node sends
its id to the node on its right. Upon receiving an id, a node
compares it with its own id. If they are equal, the node
declares itself the leader. Otherwise, it forwards the greater
id to the node on its right. Ultimately, the node with the
highest id elects itself as the unique leader.

Figure 1a shows the state machine Node (line 5) in the Ring
Leader Election protocol. The event declarations (lines 2, 3)
specify the names and payload types of the events used in the
Ring Leader Election protocol. For example, the eNominate
event (line 2) has a payload with a vote field of type tNodeId.

The state machines in P have local variables and states.
Each state may have an entry function that is executed on
entering the state through a transition. After executing the
entry function, the machine tries dequeuing an event from
its buffer and executes the associated event handler. For
instance, in Nominating state, the machine has a handler for
eNominate event (line 19), where the argument of the handler
takes the value of the event payload. Machines may send an
event to another machine or broadcast an event, by using
send (line 17) or announce (line 21), respectively. Executing
goto statements (e.g., line 12) transitions the machine to
another state. After initialization, the machine transitions
to Nominating state and sends its id to right using the
eNominate event. Upon receiving an eNominate event, it
compares vote to its own id. If equal, then it announces
an eElectedAsLeader event with its id and transitions to the
Won state. Otherwise, it sends an eNominate event to right
with the greater id as the payload.

1 type tNodeId = int;

2| event eNominate: (vote: tNodelId);

3| event eElectedAslLeader: (nodelId: tNodeId);

4

5| machine Node {

6 var id: tNodeId; # unique identifier of the node
7 var right: machine; # the node to its right

8 start state Init {

9 entry (cfg: (nodeld:tNodeId,next:machine)) {
10 id = cfg.nodeld;

11 right = next;

12 goto Nominating;

13 }

14 }

15 state Nominating {

16 entry {

17 send right,eNominate, (vote=id,)

18 }

19 on eNominate do (payload:(ballot:tNodeId)) {
20 if (payload.vote == id) {

21 announce eElectedAsLeader,(nodeld=id,);
22 goto Won;

23 } else if (payload.vote > id) {

24 send right,eNominate, (vote=payload.vote,);
25 } else {

26 send right,eNominate, (vote=id,);

27 }

28 }

29 3}

30 state Won {ignore eNominate;}

31 3}

) M _ _ eNominate eNominate | _ _ _ _ _ _ __ o
id=1 (vote=1) (vote=2)
_N 2 |eNominate |/ _ _ ___ eNominate | eElectedAsLeader | _ _
id=2 (vote=2) (nodeld=2)
Resulting trace
eNominate | eNominate | eNominate | eNominate | eElectedAsLeader | eNominate
(vote=2) | (vote=1) | (vote=2) | (vote=2) (nodeld=2) (vote=2)
N7 events N> events

(b) An example event trace with 2 nodes N; andN;

Figure 1. Ring Leader Election protocol in P
2.3 Workflow of using PINFER in practice

When employing P to verify system design correctness, de-
velopers must create both a formal system model and speci-
fications that this model must satisfy. PChecker [3] validates
the formal model against these specifications using model-
checking-based systematic state space exploration. Creating
formal system models is comparatively simpler, as it involves
abstracting the system implementation. However, develop-
ers struggle with articulating critical specifications that the

system must satisfy and identifying additional properties
that provide insights into system behavior.

Events Types, Payload Types,
Causal Relations

Event Traces

Pinfer Daikon
<

< &

Learned Specifications

Human/LLM
evaluation

Runtime
monitoring

Automated
verification

Figure 2. Workflow of PINFER

Figure 2 illustrates the PINFER workflow: developers first
create formal models, then execute PChecker to generate
execution traces during exploration, subsequently employ
PINFER to learn specifications, and finally review these gen-
erated specifications to gain a deeper understanding of sys-
tem behavior. When certain specifications are identified as
critical, developers incorporate them into the specification
set that must be rigorously tested across both system de-
sign and implementation. The specifications generated by
PINFER serve multiple downstream applications: they en-
able runtime monitoring of P specifications [8], facilitate
deductive verification through PVerifier [3], and provide de-
velopers with a comprehensive collection of specifications
that characterize system behavior. Furthermore, these spec-
ifications can be ranked and interpreted using LLM-based
auto-informalization techniques, thereby enhancing devel-
oper comprehension of complex system properties.

2.4 Specification Formula Template and Search

PINFER learns specifications using the following formula
template that is sufficiently expressive for capturing many
safety and liveness properties in protocol specifications:

It uses universal quantifiers (V, at least one) as well as nested
existential quantifiers (3, optionally) over vectors of events
(€;, €;, respectively). While this allows capturing relation-
ships between any fixed number of event types in the traces,
we found that it is enough in practice to learn specifica-
tions that are quantified over just two types of events. The
formula template uses the if-then form that occurs com-
monly in specifications to capture conditions under which
certain relationships hold on events. It further differentiates
the sub-formulas shown as Guard (), Witness ([W]) and

Hypothesis (H). Note that although this formula template
resembles a popular fragment of FOL called EPR [42], PIN-
FER does not rely on decidability of the associated logic or

€o - 8, er: N
ep <ey, e1=<¢
eo.nodeld = eq.vote
ep.nodeld < ej.vote
eg.nodeld > eq.vote
ep.nodeld < ej.vote
eg.nodeld > ej.vote

Events

Generated Predicates P

Event Combination (a) | VegVe;

Enumerated Guard G T,e1 < e, ...
Learned Hypothesis H eg.nodeld > ej.vote
Event Combination (b) | Vey3e;

Enumerated Guard G T,...

Enumerated Witness W e1 <ep,...
Learned Hypothesis H eg.nodeld = ej.vote

Learned specifications (before pruning)

(al) Veg : E.Vey1 : N.eg.nodeld > ej.vote

(a2) Yeg : E.Vey : N.ep < ey — eg.nodeld > ej.vote
(b) Veg : E.3e1 : N.e1 < eg A eg.nodeld = ej.vote
Table 2. Example illustrating main steps of PINFER

availablity of decidable models for learning specifications,
unlike many verifier-based approaches [18, 26, 37, 42, 55].
In general, learning specifications poses several challenges,
since there is an inherent trade-off between the expressive-
ness of the learning targets and search efficiency. PINFER
carefully constrains the search space for learning, and pro-
vides an iterative approach to increase the complexity of
target specifications. Furthermore, the learning procedure
in PINFER is fully automated, with the ability to leverage
user guidance if required. Specifically, PINFER uses a static
enumerative search (over é;, Ej, G, W) to provide critical fil-
ters that control the scope of dynamic learning (for H), where
the formula template (Eqn 1) provides a structured way to
decompose the overall search. We now introduce a running
example for illustrating the important steps in PINFER.

2.5 From Event Traces to Specifications

We use the Ring Leader Election protocol to illustrate the
important steps in the PINFER framework. The well-known
safety specification of the protocol, which PINFER does not
know in advance, is that a unique leader with the highest id
is elected. PINFER targets learning the following formulas
over the eElectedAsLeader (§) and eNominate (N) events:

Ve, eq : E. eg.nodeld = e;.nodeld (2)
Veg : E,e1 : N.eg.nodeld > eq.vote 3)
Veg : &.3e; : N.ey < ey A eyg.nodeld = ej.vote (4)

Eqn (2) states that the value of the nodeId field in & events
is unique, which implies the uniqueness of the leader under
the setting where each node gets a unique id. Eqn (3) states
that the value of nodeId in an & event is the highest among
the votes in NV events. Finally, Eqn (4) states that for every
& event, the nodeId must be voted in some N events that
happened before (denoted as e; <) [29] the & event. When

Vars veV

Constants ceC

Event Vars eckE

Event Types T

Terms T := C|Eo| f(T) | indexof (E)
Preds P = Pg|PF

Event Preds Pp:=E=E|E<E

Field Preds Pro=T=T|T+#T|T<T|T>T|

T<T|T > T|uP(uf(T))
SetCardinality SC:=>1|=C| <C| >2C

(]5\/ = (Vei : 7.',')+. /\ﬁ — /\}_5
¢V3 = (Vei : 7.',')+. /\1_5 d (Escej : Tj)+.L/7\71_5J /\ﬁ

Figure 3. Grammar for Target Formulas

interpreted over a single trace, an event ey happened before
another event e, if ey appears earlier in the trace than e;.

We next elaborate on the top-level workflow of PINFER
(Figure 2) that enables learning these specifications for the
Ring Leader Election protocol from event traces.

Inputs to PINFER. PINFER needs two inputs: (1) a set of
traces (which could be generated from a P program), and
(2) information about events in the trace: event types, their
payload types, and causal relations between events. PINFER
performs simple static analysis over the P program to extract
the latter. It identifies two types of events, eNominate (N)
and eElectedAsLeader (&), where the payloads have fields
vote and nodeld, respectively, of type tNodeld, as declared
in lines 2 and 3 in Figure 1a. Figure 1b shows an example
execution and the resulting event trace generated from an
instance of the P model with two nodes Ny, N, for the Ring
Leader Election protocol. Along the dashed lines, events are
ordered by the time of occurrence. The arrows show causal
relations between events. The event trace is a sequence of
events, ordered by the time of occurrence in the observed
execution.

Determining Event Combinations (§4.1). As a first step,
PINFER heuristically determines events and their respective
quantifiers for learning specifications— we call these event
combinations. PINFER automatically identifies a pair with an
& and an N event, which we use as an illustration, with the
results of intermediate steps listed in Table 2; the steps are
similar for other event pairs.

Generating Predicates # (§4.2). Given the events and their
types, shown in the top row of Table 2, PINFER generates a

set of predicates $ shown in the next row, each of which uses
standard operations over these events and their payloads.

Learning Procedure (§5). Then, PINFER performs the learn-
ing procedure, which employs a novel combination of enu-
merative search (§5.1) and dynamic learning (§5.2). For each
event combination, the enumerative search enumerates a
guard G and (optionally) a witness W (when targeting formu-
las with existential quantifiers) from the set of predicates P.
With the enumerated G (and an optionally enumerated W),
PINFER then invokes a dynamic learner (Daikon [13]) that
learns hypotheses H. Some examples of enumerated G, W,
and the corresponding learned H, are shown for the Event
Combinations labeled (a) and (b) in the table, along with the
corresponding learned specifications. Note that the learned
specification (b) from the Event Combination (b) is the same
as Eqn (4) shown earlier. This is learned because in all traces,
the value of nodeld in an & event has appeared as a vote
from some N event that occurs before the & event.

Logic-based pruning procedures (§5.3). The learning pro-
cedure can potentially result in a large number of learned
specifications, many of which are redundant (e.g., due to sub-
sumption). PINFER applies logic-based pruning procedures to
eliminate specifications due to tautology and subsumption,
resulting in a reduced set to report to the user. In our exam-
ple, the hypothesis H in Event Combination (a) is learned
by Daikon when the enumerated G is T (since the nodeId
is higher than the vote in all N events). The pruning pro-
cedure in PINFER identifies this, removes specification (a2),
and keeps only specification (al) with G = T, i.e., Eqn (3).

3 Formula Template: Grammar & Examples

In this section, we define the formal grammar and seman-
tics for the formula template used in PINFER, and describe
example specifications that illustrate its expressive power.

3.1 Grammar and Semantics

PINFER targets two top-level rules in formula templates,
shown as boxed rules in the grammar listed in Figure 3. The
first boxed rule, shown as ¢v, uses only forall (V) quantifiers
over event variables ¢;. The second boxed rule, shown as
¢v3, uses additional nested existential (3) quantifiers over
event variables €;. Variables €; and €; have types 7; and 7},
respectively. (In the sequel, we will assume that all events
are typed-events.) Additionally, the existential quantifiers
may be augmented by a Set Cardinality (SC) constraint, to
be explained shortly.

In the body of the formula templates, each of the boxes

(, wrl;Vi(i)jw H(-)) is a conjunction of atomic predicates
L - -4
P, which are defined over events or terms. The grammar for

predicates (Preds P) and terms (Terms T) is shown above
the box in Figure 3. Notably, this grammar is sufficient to

express all protocol specifications in a comprehensive set of
benchmarks, as shown later in our evaluations (§6.3).

Grammar for Terms and Predicates. As shown in the
grammar rules, terms (T) are comprised of constants (C),
fields of event payloads (E.v), function applications over
terms (f (T)) and applications of an indexof function over
event variables. For function applications over terms (f (T)),
PINFER supports standard arithmetic functions over integers
and floating points, and a sizeof function for a list or set
that returns its size. The function indexof'(e) is interpreted
as the index of event e in a trace.

Predicates (P) are of two kinds: (1) Event Preds (Pg) that re-
late event variables, and (2) Field Preds (Pr) that relate terms
built from payload fields of events. The former includes <,
the standard happens-before relation [29] to express tempo-
ral relationships between events. The latter includes standard
operators over suitably-typed terms: equality (=), inequal-
ity (#), numerical comparisons (<, >, <, >). Pr also includes
user-defined predicates (denoted uP) over terms with user-
defined function applications over terms (denoted u f_()T))
The grammar can be easily extended, supported by an evalu-
ator from concrete values of event fields in traces, to concrete
values (for terms) and to true/false (for predicates).

Support for Existential Quantification. We support forall-
exists (V3) quantifiers in ¢y3, since this can capture both
safety (e.g., for all incoming messages, there exists a hand-
shake) and some liveness properties (e.g., for all client re-
quests, there exists a server response). We refer to an exis-
tential quantifier labeled with an SC constraint as an aug-
mented existential quantifier — it allows quantification over
a set of witness events, where the cardinality of the witness
set satisfies the labeled SC constraint. This is very useful
for expressing quorums in consensus protocols (with a de-
tailed example with learning shown in §5.2). The standard
semantics of an existential quantifier is equivalent to the SC
constraint: > 1 (as shown in the rule for SC).

Semantics of Target Formulas over Traces We interpret
a target formula over a finite trace 7, which is a sequence
of events ordered by the time of occurrence. A formula ¢ is
true on a trace 7, i.e., 7 [¢, if and only if the events in
the trace satisfy the standard interpretations of quantifiers,
logical operations, equality, arithmetic operations, temporal
precedence, etc. For example, the interpretation of temporal
precedence < is defined over a trace 7~ such that if an event e;
appears before another event e; in the trace, then 77 |5 ¢; <
e;j. We extend the semantics of a target formula ¢ to a set of
traces T, where T |= ¢ if and only if VT € T. T |= ¢. We use
this semantics for evaluating the truth of a target formula
on the given set of traces, without requiring a decidable
procedure for checking validity on all possible traces.

3.2 Examples of Target Specifications

We now explain the examples of specifications in Table 1
and show how our grammar captures them. The upper set
of specifications in Table 1 shows examples that use only
forall (V) quantifiers, captured by ¢v in the grammar. The
specification for External Consistency of Google Spanner
was explained earlier (§1.2). Election Safety of the Raft [40]
protocol states that a unique leader is elected in each term.
Update Propagation specification of Chain Replication [49]
states that if a node ny is placed before n; in the chain, then
the commit log on n, is a prefix (<) of the commit log on
no. Predicates in these specifications are captured by Field
Preds (Pr) in our grammar. Note that the Update Propagation
specification has a user-defined predicate =<,,.

The bottom set shows two specifications that require
nested existential quantifiers, captured by ¢v3 in the gram-
mar. Whitelist Safety of a Firewall protocol [38] was ex-
plained in §1.2. Quorum Votes of a Consensus protocol [37]
states that any decision must have received a quorum of
votes, supported by using an augmented existential quanti-
fier with the SC constraint that the number of votes for a
decision is at least the number that makes a quorum.

3.3 User guidance enabled by the grammar

The grammar shown in Figure 3 enables the following user
guidance that customizes the search space and identifies
domain or protocol-specific relationships between events.
(UG1) Identify interesting event combinations over which
PINFER should learn the specifications.

(UG2) Provide complex predicates (e.g., checking prefix rela-
tionship between lists) that can appear in the target formula.
(UGS3) Instrument the program with ghost code to expose
some system state as auxiliary payload fields in events.

4 Search Space for Target Specifications

To prepare the search space for learning target formulas,
PINFER heuristically selects the quantified events €;, €;, which
we call event combinations. Note that although it is possible,
in principle, to systematically search over all possible event
combinations (e.g., in increasing number of events), this
would become impractical for protocols with many event
types, and likely result in hard-to-understand specifications.

4.1 Determining event combinations

PINFER performs a lightweight static analysis of event han-
dlers in the P program to extract causal relationships between
events. Our heuristics for choosing event combinations are
driven by common patterns in protocol specifications. These
are summarized in the top part of Table 3, where the first
column lists the causal relation pattern that results in one
or more event combinations with the quantified events €, €;
listed in the last two columns, respectively. For ease of un-
derstanding, we show only the event types in the last two
columns for each causal pattern. The bottom part of the table

Table 3. Causal relation patterns that result in the listed
Event Combinations (Ve; : 7; and Je; : 7).

Causal Relation Patterns F ven t Co:n b'a
Ve;:7; | Jej: 1
Same-sourced-sends
(sends e, sends e1) (r0,71) | empty
Receive-then-send (t0,71) | empty
(receives €0, then sends el) (1) {10)
Send-then-listen (t0,71) | empty
(sends €0, then listens to el) {t0) (11)
Running example | Lines
21 (E,E) | empty
Same-sourced-sends | 21, 24,26 | (5, N) | empty
17,24,26 | (N,N) | empty
. (N,E) | empty
Receive-then-send 19, 21 @ N
Send-then-listen N/A - -

illustrates these patterns on our running example with the
listed event combinations on event types, that result from
causal patterns identified on the respective lines in the P
program (Figure 1a).

Same-sourced-sends. In this pattern, events with types 7y
and 7; (with possibly 7y same as 77) are sent in the same
entry function or event handler. This guides PINFER to learn
specifications with V quantifiers over events with types 7,
and 7.

Receive-then-send. A machine may send out an event of
type 7o while handling an event of type 71, where 7y # 7.
This results in PINFER identifying two event combinations, as
shown in the table. Notably, the second event combination,
where €; = (19), guides PINFER to learn specifications with
forall quantifiers over e; : 7; and existential quantifiers over
e : 7p. These specifications capture triggering conditions
under which events of type 71 can be sent, e.g., after receiving
a quorum of events of type .

Send-then-listen. A machine may send an event of type 7,
and then start listening for an event of type 7, where 7y # 1.
Specifications learned using the listed event combinations
can capture certain liveness properties, e.g., for every event
of type 7 sent by a machine, there exists an event of type 7y
that will be received later by the machine.

4.2 Generating Candidate Templates

Given the event combinations, PINFER automatically gener-
ates a candidate template CT (€;, €;) = (M, P) for each event
combination. Here, M is a set of terms generated by recur-
sively expanding the “Terms” rule in the grammar (Figure 3),
but with restriction to the terms constructed from payload
fields of the quantified events in €; and €;. For example, for
the event combination €; = (e, : &), €; = (e; : N) inRLE pro-
tocol, M = {indexof(eg), indexof (e;), eg.nodeld, e;.vote}.
Similarly, P is a set of predicates generated by recursively
expanding the “Preds” rule in the grammar (Figure 3), but

Candidate Templates

Grid Search

{ Tracgsi

€, €

; §5.2
Dynamic Learner Interface

Event Instantiations X

T
Observations Og
v

1 diKon
Learned Predicates for H
Pruning Procedures

Learned
Specifications

Figure 4. PINFER search process: Combining an enumera-
tive Grid Search with dynamic learning by Daikon.

with restriction to the predicates over the quantified events
in €; and €; and their payload fields. The generated ¥ for
this example was shown earlier (Table 2, §2.5).

5 Learning Procedure for Specifications

The learning procedure for target specifications (formulas)
in PINFER combines enumerative search using the Candidate
Templates, and dynamic learning from the traces using a
dynamic learner such as Daikon [13]. The step-wise work-
flow is shown in Figure 4. In an outer loop, PINFER generates
Candidate Templates CT(€;, €;) = (M, P), as described in
the previous section.

An inner loop performs a grid search for each CT, to learn
specifications of increasing complexity that vary in the num-
ber of predicates and terms that may appear in the target
formula. In this section, we describe how the grid search
works and how PINFER automatically generates inputs to
Daikon in the Dynamic Learner Interface.

5.1 Enumerative Grid Search

To manage the search space complexity of target formulas,
PINFER performs a grid search over three parameters (g, w, h)
that control the number of predicates in G, W and the number
of terms in H, respectively. Specifically, for a given Candidate
Template CT = (M, P), PINFER enumerates different choices
of G and W by conjoining g and w number of predicates,
respectively, from P. For learning predicates in H, PINFER
does not directly control the number, since H is learned by
Daikon. Instead, PINFER enumerates subsets of M with h
terms, over which Daikon learns the predicates in H. We
refer to each such subset of terms as a Relate Set, denoted as
R. PINFER depends on the capabilities of the dynamic learner
to learn sufficiently expressive predicates in H. By default,
PINFER performs a search over the 3-dimensional grid space
starting at (g = 0, w = 0, h = 1) and explores different grid
points up to a user-settable bounds in each parameter (where
the w parameter is skipped when learning ¢y formulas).

5.2 Dynamic Learner Interface

PINFER provides a Dynamic Learner Interface to prepare
inputs to the dynamic learner for learning predicates in H.
First, for each event combination (€;, €;), PINFER filters given
trace (7~ € T) by removing events of types that do not match
€; or €;, preserving relevant events and their temporal order.

Quantifier Instantiations and Evaluations on Traces.
For ease of exposition, we refer to quantified events in target
formulas as symbolic events (denoted €;, € ; as before), and
events that occur in a trace as concrete events (denoted z).
Given the (filtered) traces and a specific choice of G and W
(from the enumerative grid search), PINFER computes instan-
tiations, denoted o, where symbolic events €;, € ; are instanti-
ated by type-compatible concrete events z;, Z;, respectively,
that occur within the scope of a single trace. Given an in-
stantiation o, we can compute an evaluation of a term T or a
predicate P, denoted [T |5, [P]+, respectively, by instantiat-
ing symbolic events in T, P with the corresponding concrete
events in o. In particular, an evaluation under o results in
a concrete value (e.g., an integer) for a term, and a true (T)
or false (L) value for a predicate. We extend evaluations to
conjunctions of predicates in G, W, denoted as [G], [W] o,
respectively, which result in true/false values.

Learning ¢y formulas. PINFER computes a set of instantia-
tions, denoted Y, as follows:

s=|J {ol[Glo=T}
traces

Intuitively, ¥ represents all instantiations ¢ of symbolic
events by concrete events in the given traces, such that G
evaluates to true under o. In this case, a predicate Py, such
that [Py]» is true under all o € 3, holds under the guard G
and therefore can be included in H in the target formula.

To find such predicates in H, PINFER computes a set of
observations resulting from evaluations of terms in R under
each o € %, denoted Og, as input to the dynamic learner.
Recall that in the grid search, PINFER enumerates R as a
subset of h terms over which Daikon discovers predicates
in H. As an example, suppose R = {ej.a, 1.0} and PINFER
computed the following observations Og (where t +— v
indicates that term ¢ evaluates to value v under some o):

Og = {{ep.a 0,e1.b — 2}, {eg.a > 2,e1.b — 3}}
Then, the dynamic learner can learn predicates eg.a < e;.b,
ep.a > 0, e1.b > 0, as they hold in each observation in Og.

Learning ¢v3 formulas. For handling the existential quan-
tifiers, PINFER computes the set ¥ as a set of tuples:

3= [J {(no(0) |

traces

HGHO'L‘ =TA VO'J' € w(oi). [[W]]O',-UO'j = T}}

In each tuple, the first component is an instantiation o; for
symbolic events €; such that G holds on the concrete events
(similar to the ¢y formulas above). The second component

is a set of instantiations, denoted w(o;), where each element
oj € w(o;) is an instantiation for symbolic events €;, such
that W evaluates to true under the combined (union of) in-
stantiations o; and g;. Intuitively, each ¢; € w(o;) provides
a concrete witness from the trace for the existentially quanti-
fiede 7, such that predicates in W hold on the concrete events.
Importantly, if there is no such witness o; for some o;, i.e.,
w(o;) is empty, then the associated W and ¥ are discarded,
and PINFER proceeds to the next W in the grid search.
Otherwise, PINFER computes a set of observations Og
over which Daikon discovers predicates in H. It partitions R
into two disjoint subsets — Ry3 and Ry. The partition Ry3
contains terms ¢ where some symbolic events from €; appear
in t, while Ry contains terms ¢t such that no symbolic event
from €; appears in ¢t. Then, PINFER computes Og as follows:

Og = {(0;, Witnesses(0;)) | (04, w(0;)) € =}

Here, each observation in Og is a tuple corresponding to a
tuple in 3. The first component O; are evaluations of terms
in Ry for ¢;. The second component is a non-empty set
Witnesses(O;) = {Oj1, Oja, . . .}, where each O is an evalu-
ation of terms in Ry3 under o; U oy where o} € w(0;).

Now, PINFER leverages a dynamic learner to find predi-
cates H that hold over (O;, Oji) for some Oji in each tuple
in Og (since €; is existentially quantified). We demonstrate
this for our running example next.

Running example for RLE protocol. Consider that in
the grid search for the event combination €; = (e : &) and
€; = (e1 : N), PINFER has enumerated G = T, W = e; < e,
and R = {eg.nodeld, e;.vote}. Since the nodeld of an & event
must have appeared earlier in NV events, suppose PINFER
computes Og for some given trace as shown below (with
only one tuple shown for ease of exposition):

On = {({eo.nodeld — 4},)}

{{e1.vote > 2}, {ej.vote — 4}, {e;.vote — 4}}

PINFER asks Daikon to discover predicates that relate the
values from the first component and the (multi) set of values
from the second component, in each tuple in Og. This avoids
an explicit tracking of disjunctions that would be required
to find some witness in each w(o;). In our example, since
4 (from the first component) is a member of the (multi) set
{2, 4,4} (from the second component), Daikon automatically
discovers the Member relationship, i.e., eg.nodeld € {e;.vote}.
This corresponds to learning the predicate H : ey.nodeld =
ej.vote under an existentially quantified e;. While Member
limits H to an equality predicate, we found this sufficient for
learning protocol specifications with existential quantifiers.

After Daikon discovers the predicate ey.ballot = e;.vote
in H, PINFER combines it with the enumerated G (T) and W

(e1 < €p) to assemble the following ¢y3 formula, resulting
in Eqn (4): Veo : &. ey : N. ey < ey A eg.nodeld = ej.vote.

Learning Set Cardinality constraints. Recall that a Set
Cardinality (SC) constraint can be used to augment existen-
tial quantification in ¢y3 formulas (§3.1). PINFER can also
learn an SC constraint by using Daikon. We illustrate this
process on the Quorum Votes specification of the Consensus
protocol [37] shown in Table 1, stateing that every decision
(eDecide) receives a majority of votes (eVote). In this protocol,
an eDecide event carries a decided value and a ballot, and an
eVote event carries a vote, representing the ballot it supports.
To provide the special constant in the SC constraint, we add
an eConfig event with a field for the quorum size quorum,
which is extracted from a system configuration. An eConfig
event is announced (i.e., added to a trace) during the protocol
startup. Note that this allows PINFER to consider traces that
are generated from systems with different number of nodes,
i.e., with different constants for the required quorum size,
and each trace has an event with the required quorum.

Now, when PINFER performs grid search for the event com-
bination €; = (e : eDecide), €; = (e; : eVote), it enumerates
G=Tand W = (e; <) A (eg.ballot = e;.vote). According
to the protocol semantics, an eDecide is emitted only after a
majority of eVote events satisfying W have been sent. There-
fore, for every o; that instantiates ey with a concrete eDecide
event, there must exist a set of witnesses w(o;) that instanti-
ate e; with concrete eVote events such that [W]5,u,; is true
for all 0; € w(o;) and |w(0;)| = quorum. Thus, Daikon au-
tomatically learns that the predicate |w(o;)| > quorum holds
over all such witness events. PINFER interprets this predicate
as a Set Cardinality constraint and augments the existential
quantifier accordingly, as shown in Table 1. Note that the
only user guidance needed is for adding the eConfig events
with the constant quorum (UGS3, §3.3). PINFER automatically
learns the shown specification, including the SC constraint
on the augmented existential quantifier.

5.3 Formula Assembly and Pruning Procedures

After the dynamic learner has learned predicates for H, PIN-
FER uses sanitization steps to remove those that are irrelevant
or do not express relationships between quantified events.
For example, comparing two HTTP status codes (integers)
using < may get discovered as a predicate by the dynamic
learner, but this is unlikely to be useful. After such predi-
cates are removed, PINFER conjoins the remaining ones to
construct H and assembles the target formula by putting
together the quantified €;, €; with the G, W, H.

Pruning Procedures. PINFER can often learn a large num-
ber of target formulas after dynamic learning, e.g., it assem-
bled more than 1600 target formulas for Vertical Paxos. We
implemented logic-based pruning procedures in PINFER to
soundly reduce this number by eliminating tautologies, sub-
sumed formulas, and symmetric formulas. These procedures

are applied until reaching a fixpoint, resulting in a set of
subsumption-free formulas that are reported to the user. We
describe them briefly below (detailed in Appendix B.2).
Pruning by syntactic checking. PINFER abstracts the pred-
icates in G, H to propositional variables G, H, respectively.
Then, if H C G, then G — H. PINFER uses this implica-
tion check to prune tautologies and to detect subsumptions
between two ¢y formulas with the same quantified events.
Pruning by semantic checking. To detect implications
G — H missed by syntactic checking, PINFER uses the
Z3 solver [11] (user-defined predicates considered uninter-
preted).

Pruning symmetric formulas. Two ¢y formulas are equiv-
alent by symmetry if they have the same quantified variables,
and one can be obtained from the other via rewriting sym-
metric predicates (e.g., eg.a < e1.b to eg.b > e;.0a).

Pruning by PChecker. Although the learned formulas are
consistent with the given traces, they may contain falsifi-
able formulas when considering all behaviors of the proto-
col. PINFER can (optionally) generate P specifications from
the learned formulas and check them on the P program via
PChecker [12], to eliminate formulas that are reported false.

6 Evaluations

Our evaluation addresses the following research questions:
RQ1: Can PINFER effectively learn protocol specifications
that developers consider essential correctness properties?
RQ2: How does PINFER benefit development in practice?
RQ3: Do the specifications learned by PINFER help deductive
verification, particularly for learning inductive invariants?
RQ4: How does PINFER compare to existing approaches? We
evaluated PINFER against state-of-the-art tools SWISS [18]
and DuoAI [55] on a complex benchmark for comparison.

6.1 Implementation

We implemented PINFER as an extension of the P compiler [3,
12], with approximately 7,000 lines of code in C#. We im-
plemented a Dynamic Learner Interface (§5.2) with about
1,400 lines of code in Java to inter-operate with Daikon [13].
PINFER uses the Z3 solver [11] for semantic checking in
pruning. As a specialized mode within P, PINFER accepts for-
mal models from P users, autonomously executes the model
checker to generate event traces, and subsequently presents
the learned specifications to the user.

6.2 Benchmarks

We evaluated PINFER on a diverse set of benchmarks, includ-
ing 11 well-known distributed protocols from past literature
and 3 real-world industrial case-studies.

Well-known protocols. We hand-translated 4 protocol
models (marked with T in the “Benchmark” column of Ta-
ble 4) from Ivy to P that were considered as benchmarks in
previous papers, namely, IC3FOL [2, 26], SWISS [18], and
14 [1, 37], and a Firewall model from PVerifier [3, 38]. In

Table 4. Results for learning protocol specifications (RQ1). The LoC column reports the lines of code in the P model. Syoas
shows the number of protocol specifications in the challenge set, and a v indicates that all are learned by PINFER. The next
column provides a description (and if V3 is needed). The last column shows the end-to-end run time of PINFER (in seconds).

Benchmark LoC | Syoals Description of Specifications Time (s)
Ring Leader Election [9] | 47 3+ | Unique leader, Leader Highest ID, Leader Voted 352
Consensus "[26] 61 1V | Safety (Unique Decision) 925
2PC [3] 238 2V | Atomicity (V3,), Safety (Commit or Abort) 3935
Sharded KV T*[26] 48 1v | Safety (Unique Shard Owner) 481
Paxos [31] 164 | 2+ | Safety (Unique Decision), B3(B)" 1155
Distributed Lock "[37] 73 1V | Safety (Mutual Exclusion) 902
Vertical Paxos [33] 241 2V | Safety (Unique Decision), B3(8)" 2589
Firewall [38] 80 1v/ | Whitelisted Safety (V3) 753
Lock Server T[37] 102 1v | Safety (Mutual Exclusion) 620
Chain Replication [49] 452 6+ | Update Propagation;Inprocess Requests; Linearizability (v3)™| 984
o o | v Pt gt N Sty Loe i |
GlobalClock 177 3V | Clock Monotonicity, Real-time ordering® 805
DBLeaderElection 1178 5V Monotonic Commits, Unique Leader, Read Consistency” 697
MVCC-2PC 1135 | 10V | Atomicity (V3,)*Snapshot Isolation (Vﬂ)i# 6642

T P model translated from an IVy model

* Sharded KV models key transfers but not modifications, Raft omits cluster reconfiguration

T Requires user-specified event combinations (UG1)

* Requires user-defined predicate over log entries exposed to traces via events (UG2 & UG3)
¥ Requires events that expose commit logs to traces * Implied by a subset of the learned specifications

addition, we developed P models for 6 foundational proto-
cols: Two-Phase Commit (2PC) [17], Ring Leader Election [9],
Paxos [31], Chain Replication [49], Vertical Paxos [33] and
Raft [40]. Notably, our Raft model is fully functional (ex-
cluding cluster reconfiguration), with two failure models:
unreliable network communications and node crashes.

Real-world case studies. To demonstrate the applicability
of PINFER on real-world case studies, we considered three
protocol models that were developed by service teams at
AWS. GlobalClock models a distributed clock synchroniza-
tion service, DBLeaderElection models a distributed leader
election protocol that uses an underlying append-only log to
build consensus, and finally, MVCC-2PC models a distributed
transactional service that combines multi-version concur-
rency control [6] with two-phase commit [17] to guarantee
atomicity and snapshot isolation. The formal models and
specifications were written by the developers, we demon-
strate that PINFER can automatically learn specification that
the teams had written when building these services. More
importantly, PINFER also learned important specifications
that were missing in these handwritten specifications.

Setup. The experiments were conducted on an AMD EPYC
7R13 192-core CPU with 1.5TB of memory. For each bench-
mark, input traces are generated using P model checker [12],
which systematically explores nondeterminism in system
configurations and event interleavings. For each benchmark,

10

we used 3-5 different system configurations, i.e., number
of processes/inputs or failures. For example, for Paxos, we
varied the numbers of proposers, acceptors, and learners. We
generated a total of 10,000 traces to capture diverse protocol
behaviors. In the grid search, we set the parameter upper
bounds as g = 2, w = 2, and h = 2, i.e., allowing at most two
atomic predicates in G and W, and up to two terms in the
Relate Set R for H. These parameter settings are based on our
observation of common patterns in protocol specifications,
but remain user-adjustable.

6.3 ROQ1: Learning protocol specifications

The minimum requirement for PINFER to be practical as a spec-
ification learning framework is being able to learn known spec-
ifications of existing protocols. To evaluate whether PINFER
satisfies this requirement, we establish a challenge set com-
prising 43 protocol specifications (total of Syo415 column in
Table 4): those derived from seminal papers that introduced
the protocols in our benchmarks [9, 26, 31, 33, 37, 40, 42, 49],
and for industrial case studies, specifications authored by
the developers themselves. We designate these specifications
as goal specifications that should be learned by PINFER. The
complete set of first-order logic (FOL) formulas constituting
these specifications is presented in Appendix A. Notably, 5
of these protocol specifications require V3-quantifiers, in-
cluding 2 with quorum constraints. To determine whether a
protocol specification has been successfully identified, we

employ a light-weight semantic entailment checking (part
of our pruning procedures), since the learned specifications
may be syntactically different from the original specifications
while being semantically equivalent.

Table 4 presents an overview of our benchmarks and sum-
marizes the results. The LoC column indicates the protocol
complexity by reporting the lines of code in each P model.
Subsequent columns detail the goal specifications (Syoais)
for each benchmark, provide descriptions of these protocol
specifications, and document the end-to-end execution time
of PINFER. Footnotes in the table denote instances where
user guidance (UG) was necessary to successfully learn the
goal specifications. Notably, all 43 are covered by the protocol
specifications learned by PINFER for these benchmarks, with 28
of these learned automatically without any user intervention.
The remaining 15 required some degree of user guidance.
We elucidate the key features of PINFER and user guidance
that proved essential for learning protocol specifications.

When is user guidance needed? PINFER allows three kinds
of user guidance (§3.3). In our experiments, learning protocol
specifications that require UG1 are marked with { in Table 4.
For UG1, users leverage their understanding of the proto-
col to define crucial event combinations, especially, those
overlooked by PINFER’s heuristics based on causally-related
events. For instance, in the Chain Replication benchmark, we
specified an event combination of a read response and a write
response to learn 2 of the Linearizability specifications. UG2
is needed when predicates on custom data types are impor-
tant, since generic dynamic learners do not usually support
such predicates. UG3 is more nuanced, as nodes maintain
various local states, and users may have to selectively expose
states to yield meaningful specifications. We found that ex-
posing local states reflecting shared data, e.g., commit logs
to a shared store, is especially useful. Since protocols aim to
satisfy certain consistency models over shared data across
nodes, relationships over these states are often reflected in
protocol specifications. In our evaluations, learning protocol
specifications marked with + in Table 4 require UG2 and
UGS3. For instance, we instrumented the P model of Chain
Replication by adding an event that exposes commit logs,
and provided a user-defined predicate <,, over log sequences,
where I; <, [; means that [; is a prefix of ;.

6.4 RQ2: Benefits of PINFER in practice

PINFER benefits the development by presenting a human-
tractable set of protocol specifications, which can provide
insights into system behaviors for the developers.

Human-tractable learned specifications. We evaluate the
effectiveness of the pruning procedures, showing that PINFER
can reduce the learned specifications to a reasonable number.
Table 5 shows the number of specifications remaining after
each pruning procedure. The dynamic learner Daikon [13]
can learn a large number of specifications (shown in the

11

Table 5. Number of specifications remaining after each
pruning step. S;ay and Sgeyy columns show the number of
specifications before and after all the pruning procedures,
where the reduction ratio (S;aw/Ssem) is shown in RR column.

Benchmark ‘ Sraw ‘ Ssyn | Ssem ‘ RR || Stalse
Ring Leader Elect. 479 52 30 15X 0
Consensus 361 28 28 13X 1
2PC 887 60 46 19% 9
Sharded KV 289 23 19 15X 0
Paxos 850 52 49 17x 5
Distributed Lock 740 91 77 9% 0
Vertical Paxos 1650 92 76 21X 5
Firewall 606 46 40 19x 4
Lock Server 399 44 35 11x 0
Chain Replication 533 40 37 14X 2
Raft 1080 73 58 18% 10
GlobalClock 368 37 37 9x 0
DBLeaderElect. 577 50 47 12x 9
MVCC-2PC 5789 334 236 24X 0

Sraw column). PINFER first applies sanitization and syntactic-
based pruning that prunes vacuous and redundant specifica-
tions, resulting in a significantly smaller set (shown in the
Ssyn column). Then, to detect redundancies that are missed
by syntactic checking, PINFER applies pruning by semantic
checking (shown in the Sger, column), and presents the out-
put to the user. The last two columns report the Reduction
Ratio (RR = S;aw/Ssem) and the number of specifications fal-
sified with PChecker (Sfase), i.€., PChecker found execution
traces where these specifications evaluate to false.

Note that the reported number of learned specifications
(Ssem) is under a hundred for all benchmarks except MVCC-
2PC. The higher count in the MVCC-2PC benchmark is due
to an extensive search space (with 62k invocations of Daikon
during grid search). A substantial reduction from hundreds
of specifications in Sy is achieved, with a geometric average
reduction ratio of 14.8X. Importantly, these procedures did
not eliminate any specifications PINFER covered in RQ1. We
have validated using the PChecker [3] that all the remaining
specifications in the S, are correct.

Specifications overlooked by developers. Specifications
learned by PINFER provides insights into the systems behav-
ior and also highlight some missing specifications that are
crucial for system correctness. For example, PINFER learned
two critical specifications that were overlooked by the devel-
opers in the proprietary MVCC-2PC protocol (with a sharded
storage as the application), identified in PINFER’s output by
team members familiar with the protocol: (1) only the leader
shard server can initiate a commit of transaction, and (2) each
transaction can only be prepared at most once by each shard
server. If violated, any shard server may initiate a commit
and prepare multiple times by itself, resulting in a committed
transaction without consensus. These were not present in

Table 6. Results for learning inductive invariants using
PINFER (RQ3). We use a subset of benchmarks with proofs
in PVerifer [38]. I, and I; columns show the numbers of event-
based and state-based inductive invariants, respectively.

Benchmark I, | Iy | All learned
Ring Leader Election™| 1 | 2 v
Consensus™ 115 v
Distributed Lock* 4 | 4 v
Lock Server* 4 | 4 v
Firewall 110 v
Sharded KV* 1|1 v

the hand-written specifications. In general, PINFER can bene-
fit developers by identifying specifications that are overlooked
when designing systems.

6.5 RQ3: Learning inductive invariants

To evaluate PINFER’s utility for downstream verification
tasks, we conducted experiments with benchmarks previ-
ously verified in PVerifier [38]—a framework for deductive
verification of P programs. Our evaluation focused specifi-
cally on the inductive invariants required by PVerifier proofs
that were previously provided manually by users (formulas
are provided in Appendix A). These inductive invariants fall
into two categories: event-based and state-based, with the
latter requiring additional user-defined instrumentation (for
adding events that expose host states).

Table 6 presents our results for learning inductive invari-
ants, with I, and I; representing the number of event-based
and state-based invariants required for correctness proofs,
respectively. With user-defined instrumentation (for bench-
marks marked with asterisks %), PINFER successfully learns
all inductive invariants. Without such instrumentation, PIN-
FER still learns all event-based invariants (I,) but fails to learn
the state-based ones (Is).

6.6 RQ4: Comparison with other tools

A key challenge for invariant learning tools is their ability
to handle large, complex distributed protocols. To evalu-
ate this capability, we compared PINFER with SWISS [18]
and DuoAI [55] on Vertical Paxos, the most computation-
ally demanding open-source benchmark for PINFER. Using a
24-core machine with 32GB of memory, we tested all three
approaches on the Ivy model of Vertical Paxos. DuoAl failed
to complete due to an implementation bug (we have reported
to the developers). SWISS did not produce a solution in 24
hours, probably because it searches for complete proofs in
what becomes a prohibitively large search space — Vertical
Paxos invariants include upto eight literals — while its verifier
struggles with complex queries. In contrast, PINFER learned
both safety correctness specifications and additional (likely)
invariants for Vertical Paxos in 6 hours.

12

7 Related Work

PINFER is most closely related to invariant learning approaches,
based on use of verifiers or dynamic learning.

Verifier-aided invariant synthesis. SWISS [18], DuoAlI [55]
are state-of-the-art tools for learning inductive invariants
(with V3-quantifiers) to formally prove safety properties
using verifiers [42, 50]. These approaches face applicabil-
ity and scalability limitations as discussed in §1.1. This be-
came evident in our comparative evaluation (§6.6), where
SWISS failed to terminate (i.e., failed to learn invariants)
for the Vertical Paxos protocol in 24 hours. Various earlier
efforts [15, 25, 26, 37, 43, 56] have similar limitations, and
some do not support nested existential quantifiers.

Data-driven invariant learning. Dinv [16], LIDO [52] are
leading efforts that learn safety properties from state traces,
i.e., traces of global system states. Though these approaches
scale better than verifier-based approaches, they have other
significant limitations on supporting more expressive specifi-
cations with V3-quantifiers and requiring user intervention
for manual refinement on the outputs as discussed in §1.1.
Other earlier efforts [7, 27, 53, 54] focused on learning
property patterns over execution traces or message sequence
charts. Specifically, Perracotta [54] uses pre-defined property
templates to recognize patterns, Beschastnikh et al. [7] is
tailored for finding temporal relationships between events,
and Kumar et al. [27] uses a set of regular expression tem-
plates to find message sequence patterns. Although their
target temporal patterns can be viewed in terms of quanti-
fiers and precedence over the occurrence of events, they do
not support expressing any relationships between payloads
of the related events. On the other hand, temporal relations
targeted by these techniques can be learned by PINFER.

Verification of distributed systems. Our work is more
broadly related to extensive work on formal verification of
distributed systems. Efforts based on program logics and
theorem-proving [36, 45, 46, 51], using interactive theorem-
provers such as Rocq and Iris [24, 48], often require high
manual effort to formulate and find correctness proofs. Semi-
automated efforts [19, 20, 34, 38, 41, 47, 57] leverage user-
provided annotations to formulate verification tasks handled
by automated verifiers such as Ivy [42, 50], Dafny [35], or
Uclid [28]. Among these, a recent work Kondo [57] proposes
an invariant taxonomy that classifies invariants as Regular
Invariants (facts about low-level details, e.g., the network)
and Protocol Invariants (behaviors of the protocol). This
serves as guidance for users to specify (inductive) invariants
that draw connections between the network and host states.
In PINFER, these invariants can be expressed as event-based
invariants when host states are made visible in event traces.

Model checking and automatic state exploration have also
been used to find bugs in distributed systems [12, 22, 30],
although their scalability is limited to small systems. PINFER

can utilize traces generated by these techniques, and also
use them to potentially falsify the learned specifications.

8 Conclusion

We present PINFER, an automated learning framework that
learns specifications from event traces of distributed systems.
It uses a specialized formula template to express target spec-
ifications with quantified events and relationships between
their payloads, including support for V3-quantifiers. PINFER
uses a novel learning procedure in which a static enumera-
tive search on target formulas is combined effectively with
dynamic learning on event traces. Our evaluations demon-
strate that PINFER can learn all the protocol specifications
from our benchmark suite of 11 well-known distributed pro-
tocols and 3 proprietary industrial-scale protocols, including
specifications that were missing for a proprietary protocol.
We additionally show that PINFER can also learn inductive
invariants that benefit downstream verification tasks.

References

[1] GitHub - GLaDOS-Michigan/I4: The code base for the I4 prototype, as
described in the SOSP *19 paper "I4: Incremental Inference of Inductive
Invariants for Verification of Distributed Protocols" — github.com.
https://github.com/GLaDOS-Michigan/14. [Accessed 11-04-2025].
GitHub - jrkoenig/folseparators: First Order Logic Separators —
github.com. https://github.com/jrkoenig/folseparators. [Accessed
11-04-2025].

GitHub - p-org/P: The P programming language. — github.com. https:
//github.com/p-org/P. [Accessed 18-03-2025].

Wei An, Xiao Bi, Guanting Chen, Shanhuang Chen, Chenggqi Deng,
Honghui Ding, Kai Dong, Qiushi Du, Wenjun Gao, Kang Guan,
Jianzhong Guo, Yongqiang Guo, Zhe Fu, Ying He, Panpan Huang,
Jiashi Li, Wenfeng Liang, Xiaodong Liu, Xin Liu, Yiyuan Liu, Yux-
uan Liu, Shanghao Lu, Xuan Lu, Xiaotao Nie, Tian Pei, Junjie Qiu,
Hui Qu, Zehui Ren, Zhangli Sha, Xuecheng Su, Xiaowen Sun, Yix-
uan Tan, Minghui Tang, Shiyu Wang, Yaohui Wang, Yongji Wang,
Ziwei Xie, Yiliang Xiong, Yanhong Xu, Shengfeng Ye, Shuiping Yu,
Yukun Zha, Liyue Zhang, Haowei Zhang, Mingchuan Zhang, Wentao
Zhang, Yichao Zhang, Chenggang Zhao, Yao Zhao, Shangyan Zhou,
Shunfeng Zhou, and Yuheng Zou. Fire-flyer ai-hpc: A cost-effective
software-hardware co-design for deep learning, 2024.

Robert Beers. Pre-rtl formal verification: An intel experience. In 2008
45th ACM/IEEE Design Automation Conference, pages 806-811, 2008.
Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil,
and Patrick O’Neil. A critique of ansi sql isolation levels. SIGMOD
Rec., 24(2):1-10, May 1995.

Ivan Beschastnikh, Yuriy Brun, Michael D. Ernst, Arvind Krishna-
murthy, and Thomas E. Anderson. Mining temporal invariants from
partially ordered logs. In Managing Large-Scale Systems via the Analy-
sis of System Logs and the Application of Machine Learning Techniques,
SLAML ’11, New York, NY, USA, 2011. Association for Computing
Machinery.

Marc Brooker and Ankush Desai. Systems correctness practices at
aws: Leveraging formal and semi-formal methods. Queue, 22(6):79-96,
February 2025.

Ernest Chang and Rosemary Roberts. An improved algorithm for
decentralized extrema-finding in circular configurations of processes.
Commun. ACM, 22(5):281-283, May 1979.

James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christo-
pher Frost, J] Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher

—
oo
—

—
oo
[t

—
N=)
—

(10

[t

13

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

Heiser, Peter Hochschild, Wilson Hsieh, Sebastian Kanthak, Eugene
Kogan, Hongyi Li, Alexander Lloyd, Sergey Melnik, David Mwaura,
David Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig, Dale Woodford,
Yasushi Saito, Christopher Taylor, Michal Szymaniak, and Ruth Wang.
Spanner: Google’s globally-distributed database. In OSDI, 2012.
Leonardo De Moura and Nikolaj Bjerner. Z3: an efficient smt solver.
In Proceedings of the Theory and Practice of Software, 14th International
Conference on Tools and Algorithms for the Construction and Analysis
of Systems, TACAS’08/ETAPS’08, page 337-340, Berlin, Heidelberg,
2008. Springer-Verlag.

Ankush Desai, Vivek Gupta, Ethan Jackson, Shaz Qadeer, Sriram Ra-
jamani, and Damien Zufferey. P: safe asynchronous event-driven
programming. In Proceedings of the 34th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 13, page
321-332, New York, NY, USA, 2013. Association for Computing Ma-
chinery.

Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen McCamant,
Carlos Pacheco, Matthew S. Tschantz, and Chen Xiao. The daikon sys-
tem for dynamic detection of likely invariants. Sci. Comput. Program.,
69(1-3):35-45, December 2007.

George Fink and Matt Bishop. Property-based testing: a new approach
to testing for assurance. SIGSOFT Softw. Eng. Notes, 22(4):74-80, July
1997.

Aman Goel and Karem Sakallah. On symmetry and quantification: A
new approach to verify distributed protocols. In NASA Formal Methods:
13th International Symposium, NFM 2021, Virtual Event, May 24-28,
2021, Proceedings, page 131-150, Berlin, Heidelberg, 2021. Springer-
Verlag.

Stewart Grant, Hendrik Cech, and Ivan Beschastnikh. Inferring and
asserting distributed system invariants. In Proceedings of the 40th Inter-
national Conference on Software Engineering, ICSE 18, page 1149-1159,
New York, NY, USA, 2018. Association for Computing Machinery.
Jim Gray. The transaction concept: virtues and limitations, page 140-150.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1988.
Travis Hance, Marijn Heule, Ruben Martins, and Bryan Parno. Finding
invariants of distributed systems: It’s a small (enough) world after
all. In 18th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 21), pages 115-131. USENIX Association, April
2021.

Travis Hance, Yi Zhou, Andrea Lattuada, Reto Achermann, Alex Con-
way, Ryan Stutsman, Gerd Zellweger, Chris Hawblitzel, Jon Howell,
and Bryan Parno. Sharding the state machine: Automated modular
reasoning for complex concurrent systems. In 17th USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI 23), pages
911-929, Boston, MA, July 2023. USENIX Association.

Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan
Parno, Michael L. Roberts, Srinath Setty, and Brian Zill. Ironfleet:
proving practical distributed systems correct. In Proceedings of the
25th Symposium on Operating Systems Principles, SOSP ’15, page 1-17,
New York, NY, USA, 2015. Association for Computing Machinery.
Maurice P. Herlihy and Jeannette M. Wing. Linearizability: a correct-
ness condition for concurrent objects. ACM Trans. Program. Lang.
Syst., 12(3):463-492, July 1990.

Gerard J. Holzmann. The model checker spin. IEEE Trans. Softw. Eng.,
23(5):279-295, May 1997.

Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron
Turon, Lars Birkedal, and Derek Dreyer. Iris: Monoids and invariants
as an orthogonal basis for concurrent reasoning. In Proceedings of
the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 15, page 637-650, New York, NY, USA,
2015. Association for Computing Machinery.

Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron
Turon, Lars Birkedal, and Derek Dreyer. Iris: Monoids and invariants
as an orthogonal basis for concurrent reasoning. In Proceedings of

https://github.com/GLaDOS-Michigan/I4
https://github.com/jrkoenig/folseparators
https://github.com/p-org/P
https://github.com/p-org/P

[25]

[26]

[27]

(28]

[29

—

(30]
(31]

(32]

(33]

(34]

(35]

(36

—

(37

—

the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’15, page 637-650, New York, NY, USA,
2015. Association for Computing Machinery.

Aleksandr Karbyshev, Nikolaj Bjerner, Shachar Itzhaky, Noam Rinet-
zky, and Sharon Shoham. Property-directed inference of universal
invariants or proving their absence. J. ACM, 64(1), March 2017.
Jason R. Koenig, Oded Padon, Neil Immerman, and Alex Aiken. First-
order quantified separators. In Proceedings of the 41st ACM SIGPLAN
Conference on Programming Language Design and Implementation,
PLDI 2020, page 703-717, New York, NY, USA, 2020. Association for
Computing Machinery.

Sandeep Kumar, Siau-Cheng Khoo, Abhik Roychoudhury, and David
Lo. Inferring class level specifications for distributed systems. In
Proceedings of the 34th International Conference on Software Engineering,
ICSE °12, page 914-924. IEEE Press, 2012.

Shuvendu K. Lahiri and Sanjit A. Seshia. The uclid decision procedure.
In Rajeev Alur and Doron A. Peled, editors, Computer Aided Verification,
pages 475-478, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.
Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Commun. ACM, 21(7):558-565, July 1978.

Leslie Lamport. The temporal logic of actions. ACM Trans. Program.
Lang. Syst., 16(3):872-923, May 1994.

Leslie Lamport. The part-time parliament. ACM Trans. Comput. Syst.,
16(2):133-169, May 1998.

Leslie Lamport. Industrial Use of TLA+ — lamport.azurewebsites.net.
https://lamport.azurewebsites.net/tla/industrial-use.html, 2019. [Ac-
cessed 10-03-2025].

Leslie Lamport, Dahlia Malkhi, and Lidong Zhou. Vertical paxos and
primary-backup replication. In Proceedings of the 28th ACM Symposium
on Principles of Distributed Computing, PODC *09, page 312-313, New
York, NY, USA, 2009. Association for Computing Machinery.

Andrea Lattuada, Travis Hance, Jay Bosamiya, Matthias Brun, Chan-
hee Cho, Hayley LeBlanc, Pranav Srinivasan, Reto Achermann, Tej
Chajed, Chris Hawblitzel, Jon Howell, Jacob R. Lorch, Oded Padon,
and Bryan Parno. Verus: A practical foundation for systems verifica-
tion. In Proceedings of the ACM SIGOPS 30th Symposium on Operating
Systems Principles, SOSP 24, page 438-454, New York, NY, USA, 2024.
Association for Computing Machinery.

K. Rustan M. Leino. Dafny: an automatic program verifier for func-
tional correctness. In Proceedings of the 16th International Conference on
Logic for Programming, Artificial Intelligence, and Reasoning, LPAR’10,
page 348-370, Berlin, Heidelberg, 2010. Springer-Verlag.

Mohsen Lesani, Christian J. Bell, and Adam Chlipala. Chapar: certified
causally consistent distributed key-value stores. In Proceedings of
the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’16, page 357-370, New York, NY, USA,
2016. Association for Computing Machinery.

Haojun Ma, Aman Goel, Jean-Baptiste Jeannin, Manos Kapritsos, Baris
Kasikei, and Karem A. Sakallah. I4: incremental inference of inductive
invariants for verification of distributed protocols. In Proceedings of
the 27th ACM Symposium on Operating Systems Principles, SOSP 19,
page 370-384, New York, NY, USA, 2019. Association for Computing
Machinery.

Federico Mora, Ankush Desai, Elizabeth Polgreen, and Sanjit A. Seshia.
Message chains for distributed system verification. Proc. ACM Program.
Lang., 7(00PSLA2), October 2023.

Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc
Brooker, and Michael Deardeuff. How amazon web services uses
formal methods. Commun. ACM, 58(4):66—73, March 2015.

Diego Ongaro and John Ousterhout. In search of an understandable
consensus algorithm. In 2014 USENIX Annual Technical Conference
(USENIX ATC 14), pages 305-319, Philadelphia, PA, June 2014. USENIX
Association.

14

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

Oded Padon, Giuliano Losa, Mooly Sagiv, and Sharon Shoham. Paxos
made epr: decidable reasoning about distributed protocols. Proc. ACM
Program. Lang., 1(OOPSLA), October 2017.

Oded Padon, Kenneth L. McMillan, Aurojit Panda, Mooly Sagiv, and
Sharon Shoham. Ivy: safety verification by interactive generalization.
SIGPLAN Not., 51(6):614-630, June 2016.

Oded Padon, James R. Wilcox, Jason R. Koenig, Kenneth L. McMillan,
and Alex Aiken. Induction duality: primal-dual search for invariants.
Proc. ACM Program. Lang., 6(POPL), January 2022.

Koushik Sen. Concolic testing. In Proceedings of the 22nd IEEE/ACM
International Conference on Automated Software Engineering, ASE 07,
page 571-572, New York, NY, USA, 2007. Association for Computing
Machinery.

Ilya Sergey, James R. Wilcox, and Zachary Tatlock. Programming
and proving with distributed protocols. Proc. ACM Program. Lang.,
2(POPL), December 2017.

Upamanyu Sharma, Ralf Jung, Joseph Tassarotti, Frans Kaashoek, and
Nickolai Zeldovich. Grove: a separation-logic library for verifying
distributed systems. In Proceedings of the 29th Symposium on Operating
Systems Principles, SOSP ’23, page 113-129, New York, NY, USA, 2023.
Association for Computing Machinery.

Nikhil Swamy, Catélin Hritcu, Chantal Keller, Aseem Rastogi, Antoine
Delignat-Lavaud, Simon Forest, Karthikeyan Bhargavan, Cédric Four-
net, Pierre-Yves Strub, Markulf Kohlweiss, Jean-Karim Zinzindohoue,
and Santiago Zanella-Béguelin. Dependent types and multi-monadic
effects in f*. SIGPLAN Not., 51(1):256-270, January 2016.

The Coq Development Team. The coq proof assistant — https://doi.
org/10.5281/zenodo.14542673, September 2024.

Robbert van Renesse and Fred B. Schneider. Chain replication for
supporting high throughput and availability. In Proceedings of the 6th
Conference on Symposium on Operating Systems Design & Implementa-
tion - Volume 6, OSDI'04, page 7, USA, 2004. USENIX Association.
James R. Wilcox, Yotam M. Y. Feldman, Oded Padon, and Sharon
Shoham. mypyvy: A research platform for verification of transition
systems in first-order logic. In Computer Aided Verification: 36th Inter-
national Conference, CAV 2024, Montreal, QC, Canada, July 24-27, 2024,
Proceedings, Part II, page 71-85, Berlin, Heidelberg, 2024. Springer-
Verlag.

James R. Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock,
Xi Wang, Michael D. Ernst, and Thomas Anderson. Verdi: a frame-
work for implementing and formally verifying distributed systems.
In Proceedings of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI "15, page 357-368, New
York, NY, USA, 2015. Association for Computing Machinery.

Yuan Xia, Deepayan Sur, Aabha Shailesh Pingle, Jyotirmoy V. Desh-
mukh, Mukund Raghothaman, and Srivatsan Ravi. Discovering
likely invariants for distributed systems through runtime monitor-
ing and learning. In Krishna Shankaranarayanan, Sriram Sankara-
narayanan, and Ashutosh Trivedi, editors, Verification, Model Checking,
and Abstract Interpretation, pages 3-25, Cham, 2025. Springer Nature
Switzerland.

Maysam Yabandeh, Marco Canini, Dejan Kostic, and Abhishek Anand.
Finding Almost-Invariants in Distributed Systems . In Reliable Dis-
tributed Systems, IEEE Symposium on, pages 177-182, Los Alamitos,
CA, USA, October 2011. IEEE Computer Society.

Jinlin Yang, David Evans, Deepali Bhardwaj, Thirumalesh Bhat, and
Manuvir Das. Perracotta: mining temporal api rules from imperfect
traces. In Proceedings of the 28th International Conference on Soft-
ware Engineering, ICSE 06, page 282-291, New York, NY, USA, 2006.
Association for Computing Machinery.

Jianan Yao, Runzhou Tao, Ronghui Gu, and Jason Nieh. DuoAl: Fast,
automated inference of inductive invariants for verifying distributed
protocols. In 16th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 22), pages 485-501, Carlsbad, CA, July 2022.

https://lamport.azurewebsites.net/tla/industrial-use.html
https://doi.org/10.5281/zenodo.14542673
https://doi.org/10.5281/zenodo.14542673

[56

(57

[58

[l

]

—

USENIX Association.

Jianan Yao, Runzhou Tao, Ronghui Gu, Jason Nieh, Suman Jana, and
Gabriel Ryan. DistAl: Data-Driven automated invariant learning for
distributed protocols. In 15th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 21), pages 405-421. USENIX
Association, July 2021.

Tony Nuda Zhang, Travis Hance, Manos Kapritsos, Tej Chajed, and
Bryan Parno. Inductive invariants that spark joy: Using invariant
taxonomies to streamline distributed protocol proofs. In 18th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
24), pages 837-853, Santa Clara, CA, July 2024. USENIX Association.

Xiaogang Zhu, Sheng Wen, Seyit Camtepe, and Yang Xiang. Fuzzing:
A survey for roadmap. ACM Comput. Surv.,, 54(11s), September 2022.

15

Appendix
A Specifications in the challenge set

Here, we list the protocol specifications in the challenge set

for each benchmark. Event names are abbreviated as letters.

Events that are marked with * means that they are added via
user guidance UG3. English descriptions of each specification
are placed below the formula.

A.1 Ring Leader Election protocol

Event types

eElectedAsLeader: & eNominate: N

Specification: Unique Leader
Veo, e1 : B.ey.nodeld = e;.nodeld

This specification states that the elected leader is unique,
under the setting where nodeld assigned to each node are
distinct. In our setting where the Node machine immediate
transitions into Won state after receiving its own nodeId as
a vote, this specification alone is bogus since there can be
only 1 & event in a single round of leader election. There-
fore, we include the following two for strengthening:

Specification: Leader highest
Veg : E,e1: N.eg.nodeld > eq.vote

The leader has the highest nodeId.
Specification: Leader elected

Veg: &Ede; : N.ey < ey A ej.nodeld = ej.vote

The leader must have been voted in an earlier N event.

Inductive Invariants

Veg, e1 : N.eyg.nxt = e;.nxt A ey < e; — eg.vote < ej.vote

Veo : &, e : N.ey.nodeld > e;.vote

Veg, e1 : N.eg.vote = ey.nxt — eg.vote > ej.vote

We applied user guidance to include the nxt field, which
is the nodeld of the node to the right, resulting in the
three inductive invariants. The first states that vote sent to

the same target is always monotonically increasing. The
second states that the nodeId of the & event is the highest

A2 2PC

Event types

eCommitTxn: C eAbortTxn: A ePrepareSuccess: P

Specification: Atomicity
Vey : Cpeq : P.er < ey A eg.txnld = eg.txnld

If a transaction is committed (C), then there must exists n,
which is the number of participants, successful prepares
() that happened before.

Specification: Commit or Abort
Vey : A, eq : C.ey.txnld # eq.txnld

A transaction cannot be both committed and aborted.

A.3 Sharded KV

Event types

eOwns*: O eTransfer: T~

Specification: Unique Shard Owner
Veo, €1 : O. eg.key = e;.key —
ep.value = ej.value A ey.node = e;.node

Each key is owned by a unique shard.

Inductive Invariants

Vey: O,e1: T .eg.key = e;.key —
ep.node # ey.src

Veg, e1 : T . eg.key = er.key —

eo.dst = ej.dst A eg.value = ej.value

A.4 Paxos

Event types

eLearn: D eAcceptReq: A

Specification: Unique Decision
Vey, e1 : D. ey.value = ey.value

Decisions carry a unique decision value.

Specification: B2(8)
Vey : D, ey : A.eg.ballot < e;.ballot —
ep.value = ej.value

If a decision has been made in a smaller round, then the
higher-numbered round should propose the decided value
in the smaller round.

A.5 Distributed Lock

A.7 Firewall

Event types

eHasLock: L eNodeState*: N eTransfer: T~

Specification: Mutual Exclusion
Vey, e1 : L. eg.epoch = ej.epoch — ey.node = e;.node

The node that acquired the lock is unique in a single epoch
of lock acquiring.

Inductive Invariants

Ve, e1 : N.eg.hasLock A ey.epoch = ej.epoch —
ep.node = e.node

Veo, e1 : T . eg.round = e;.round —
ep.node = ej.node A eg.epoch = e;.epoch

Veo : N.eg.hasLock — ey : T.e1 < egA
ep.node = ej.node A eg.epoch = ej.epochA
ey.round = e;.round

Veg: L,e1 : N.eg.round = e;.round A —e;.hasLock —
eg.epoch > ej.epoch

Vey : L,e1 : N.ey.round = e;.round —
eg.epoch > ej.epoch

Veg: N,e1 : T.e1 < ey A eg.hasLock —
eg.epoch > ej.epoch

Veo : N,er : T.ep < eg — eg.epoch < ej.epoch

Veg,e1 : T.ey < e; — ej.epoch < ej.epoch

A.6 Vertical Paxos

Event types

eDecided: D ePropose: P

Specification: Unique Decision
Veg, e1 : D. eg.value = eq.value

The decision value is unique in decision events.

Event types eRecv: S eGrant: A SentFromlnternal: T

Specification: Whitelist Safety
Vey : S.eg.allowed — Fe; : T.e; < eg A eg.src = ep.dst

If the receiving is allowed, then there exist some granting
event that grant the permission to the sender.

Inductive Invariant

Vey : A.Te; : T.e; < ey A eg.node = eq.dst

A.8 Lock Server

Event types
eHoldsLock: L eServerState*: S
eGrant: G eUnlock: U

Specification: Mutual Exclusion
Veo, e : L. eyg.epoch = ey.epoch — eg.node = ej.node

The node that acquires the lock is unique in each epoch.

Inductive Invariants

Ve, e1 : G.ep.epoch = e;.epoch — ey.node = ej.node

Veo, e1 : U.eg.epoch = ej.epoch — ey.node = ej.node

Vey: L,e1: G.ey.epoch = ej.epoch — e < e

Veo : S,e1: G.eg.epoch = er.epoch A ey < ey —
—eg.holdsLock

Veo : S,e1 : U.eg.epoch = er.epoch A e < ey —
—eg.holdsLock

Veo : S,e1: L.ey.epoch = ej.epoch Ae; < ey —
—eg.holdsLock

Veo: L, e : U.eg.epoch = ej.epoch — ¢y < e;

Veo : G,e1: U. ey.epoch = e;.epoch — ey < €1

Specification: B3(8)
Vey : D,e; : P.eg.round < ej.round — ey.value = ej.value

If a value has been decided in an earlier configuration,
proposers from the current configuration can only propose
the decided value from the earlier configuration.

A.9 ChainReplication

A.10 Raft

Event types
eReadSuccess: R eWriteResponse: ‘W eNotifyLog™: N

Event types
eBecomeLeader: B eEntryApplied: A eNotifyLog*: N

Specification: Update Propagation
Vey, e1 : N.eg.pos > e1.pos A eg.epoch = ej.epoch —
eo.log < ey.log

If a node ny is placed before a node n; in the chain, then
the log of n; is a prefix of the log of node ny. Here, ey.log =
e1.log denotes the prefix relation: e;.log is a prefix of e;.log.

Specification: Inprocess Requests

Vep, e1 : N.ep.pos < e1.pos A eg.epoch = ej.epoch —
eo.log = eg.sent & e;.log

If a node ny is placed before a node n;, then the log of ng

equals the sent but not acked log union with the log of

ny, ordered by time of occurrence. Here, ey.sent @ e;.log

denotes the ordered union of requests in ey.sent and e;.log
(by time of occurrence).

Specification: Linearizability
Vep,e1: R.ey < e1 A eg.key = e;.key —
ep.version < ej.version
Vey : R,e; : W.eg < ey A ey.key = ej.key —
ep.version > ej.version
Veg : R.Je; : W.eg < ey A eg.version = eq.versionA
eo.key = e;.key A eg.value = ey.value
Veg,e1: W.ey < e1 A eg.key = eg.key —
ep.version < ej.version

The first states that the version number in the read response
for the same key increases monotonically;

the second states that if a read to a key k happens after the
write to k, then the version in the read response is at least
as new as the version of the write response.

the third formula states that if some value is successfully
read, then there exists a previous write to that key;

the third formula states that writes to the same key always
returns the latest version.

Together, these formulas state that a read always reads the
latest write.

Specification: Election Safety
Vey, e1 : B.ey.term = ej.term — eg.leader = e;.leader

A unique leader is elected in each term

Specification: State Machine Safety
Ve, €1 : A. eg.index = er.index — ey.payload = e;.payload

If the applied entry is on the same index, then they have
the same payload.

Specification: Leader Append-Only
Veg, e : A.eg.term < ej.term — ep.index < ej.index

The leader only appends to the log but does not remove
from it

Specification: Leader Completeness
Ve, e1 : B.eg.term < er.term — eg.log < e;.log

A leader in a later term contains all the previous applied

logs

Specification: Log Matching
Veo, e1 : N.Vi, j.ey.log[i] = e;.log[i] A j € [0,i) —
eo-log[j] = er.log[j]

If two logs Iy and I; on two different nodes agree on an
index i, then Iy and [; also agree on all preceding indices
j<i.

A.11 GlobalClock

A.13 MVCC-2PC

Event types
eLocalClock: L

Specification: Clock Monotonicity
Ve, eq : L. ey.latest < ej.latest —
eg.trueTime < ej.trueTime

The latest bound of the clock respects the true time.

Specification: Real-time ordering

Veg, e1 : L.ey.trueTime < e.trueTime —
ep.earliest < ej.latest

Veg, e1 : L.ey.trueTime < e;.trueTime
N eg.target = ej.target —
eo.earliest < ej.earliest

The time bounds reflect the true time. This is similar to
Google Spanner’s External Consistency [10].

A.12 DBLeaderElection

Event types
DataCommited: C LeaderCommited: £ CRead: R
ECRead: & AquireLeader: A

Specification: Unique Leader
Veg, €1 : A. eg.gen = e;.gen — eyg.node = e1.node

A unique leader is elected for each generation.

Specification: Read Consistency
Veo : C,e; : R.ep < ey — eg.ts > e1.ts A ep.seq > eq.seq

Veo: C,e1: E.ey < e; — e.seq > eg.5eq

Specification: Monotonic Commits
Veg,e1 : C.eyg < €1 — ep.gen < ej.gen
Neg.ts < eqr.ts A ey.seq < ej.seq
Vep,e1: L.ey < e; — eg.gen < eq.gen
N eg.ts < ej.ts N\ eg.seq < ej.seq

If a commit Cy happens before a commit Cy, then C; com-
mits the more updated data than C,.

Event types

eCommitRead™: R eCommitWrite: W eCommitTxn: T
eRouterStatus: U eShardPrep: S eLeadCommit: L
eShardCommit: P eShardAbort: A

Specification: Atomicity

Veo: T,e: L. eg.status = COMMITTED A eg.gid = ey.gid —
ey.status = COMMITTED

Veo: U, e : T .ep.gid = e;.gid A e1.status = ABORT —
eg.status = ABORT

Veo : U J\ey participants|er * S.e1 < egA
eo.gid = ey.gid A ey .status = OK

Veo : P,er: L.eg.gid = e1.gid — e < egA
eq.status = COMMITTEDA
ep.commit_time = e;.commit_time

Vey : U, e1 : A. ey.gid = e1.gid — €y < e1A

eg.status = ABORT

Specification: Snapshot Isolation

Veo : R,e1 : S.eg.gid = e1.gid — e1 < ey
e;.status = OK A eg.status = COMMITTEDA
ep.commit_time > ej.prepare_time

Veg,e1 : W.eg < ey A ey.key = e1.key —
ep.commit_time > ej.commit_time

Vey : R, er : W.ey.start_time > ej.commit_timeA
eo-key = e;.key — eg.version > ej.version

Vey : R, er : W.ey.commit_time < ej.start_timeA
eo.key = e;.key — ey < e1A
ep.version < ej.version

Veo : R3e; : W.ep < ey A eg.key = eg.keyn

eo.val = ej.val A ey.version = ej.version

B Details of PINFER

B.1 Pseudo-code for generating terms and predicates

Algorithm 1 Bottom-up Term Enumeration

Input Max. depth d; functions F; quantified variables €
Output Terms with max depth d, My

1: procedure ENum-TeErRM(d, €, F)

2 if d = 0 then

3 My = {x.v; | x € €,0; € PAYLOADS-OF(x)}

4 Mgy = My U {indexof(x) | x € €}

5: Ord « {x v INc-ORDER() | x € My}

6 else

7 ENnuM-TERM(d — 1,8, F)

8 Proj == {x.v; | x € My_1,v; € FiELDs-OF(x)}
9: My ={f(%)| f € F,x € Arc(f, M4-1,0rd)}
10: Ord « {x — INc-OrDER() | x € My U Proj}
11: return Proj UM, U My_;

12: end if

13: end procedure

Algorithm 2 Construction of Grammar Rules for Predicates

Input S the protocol model; 7 the set of user-provided
functions; U the set of user-provided predicates; M the set
of terms; € the event combination

Output £ production rules of atomic predicates

1: procedure CONSTRUCT-GRAMMAR(S, P, M, €)

2 E,T,P,PF,PEZG

3 Ei « (ei)ei:eieé > E Rule

4 T := ALL-TyPES(M)

5 Comp = {<,>,<, >}

6 fOI'J_C)E{Z_),ll_J)iEM,TjE?,(Z_))ilfj)}do

7 Ty, — (Xo | X1 |-+ | Xn) > T Rule

8 end for

9 T, (T,) T
e (D) e > uf ()

10: for 7;,7; € Tx 7 do

11: ifrizerH(x:Tizy:rj)eSthen

12: Pr — (TTi =T, > P Rule

13: end if

14: if Ip(x: 75,y : 7;) € S A p € Comp then

15 Pr — (T,i op T,j) > P Rule

oreComp

16: end if

17: end for

18: Pr (T..) P T
e (pT0) e > uP(uf ()

19: Pp (El = Ej)ei:gi,EjzsjEEXEAEL:EJ-/\#]' > Pg Rule

20: Pp «— (E; < E; | P)e,-:s,—,ej:.sjeé'xé/\i ‘i > Pr Rule

21: return (Pr | Pg)
22: end procedure

B.2 Pruning Procedures

PINFER can often learn a large number of target formulas,
e.g., it assembled more than 1600 learned formulas for Ver-
tical Paxos after dynamic learning. However, the learned
set can contain many redundant formulas, i.e., formulas im-
plied by other formulas. Therefore, we implemented logic-
based pruning procedures in PINFER to soundly reduce this
number by eliminating tautologies, subsumed formulas, and
symmetric formulas. These procedures are applied to the
learned formulas until reaching a fixpoint, resulting in a set
of subsumption-free formulas reported to the user.

Pruning by syntactic checking. PINFER abstracts the
predicates in G and H to propositional variables, and con-
siders G and H as sets of propositional variables G and H,
respectively. Then, if H C G, then G — H. PINFER uses
this check to prune tautologies and to detect subsumptions
between two formulas with the same quantified events. For
instance, given two such formulas

Sl = Ve,- : T,'.G(gi) — Hej : Tj.H(gi, EJ)

52 = Ve,- : Ti.G’(é)i) i 36’]' : Tj.H,(Ei,(_f)j)
If G - G and H — H’, then S; subsumes S,. In this case,
PINFER keeps S; and prunes S;. We use syntactic checking
first because it is very fast and does not require an SMT
solver (e.g., Z3 [11]), although it can miss some semantic

implications due to over-approximation in the abstraction
of predicates.

Pruning by semantic checking. To detect implications
missed by syntactic checking, PINFER leverages Z3 [11] to
check implications G — H, and then uses them for detecting
tautologies and subsumptions. While this can support Basic
Predicates (P) using their standard interpretations and could
treat user-defined predicates/functions as uninterpreted, it
may miss an implication that requires additional axioms to
be user-provided.

Pruning symmetric formulas. Two formulas are equiv-
alent by symmetry if they are V-only formulas with all quan-
tified variables of the same type, and where one can be ob-
tained from the other by “flipping” arithmetic comparisons.
For example, the following two formulas are equivalent by
symmetry, and PINFER only keeps one of them:

Ve, e1 : T. eg.x1 < €1.xX2 — €9.y1 < €1.U2
Vep, e1 : T. eg.x2 > €1.X1 — €9.Yz > €1.Y;

Pruning by PChecker. Although the learned formulas are
consistent with the input traces, they may contain false can-
didates since the traces are likely to under-approximate all
behaviors of the protocol. To eliminate false candidates, we
generate P specifications from the learned specifications and
check them on a protocol model by utilizing PChecker [12].
Since pruning by PChecker often requires more time than
logic-based pruning, this step is optional.

	Abstract
	1 Introduction
	1.1 Motivation for our work
	1.2 PInfer: Key Ideas
	1.3 Results and Contributions

	2 Overview of PInfer Framework
	2.1 Background: P Modeling Language
	2.2 Example: Ring Leader Election protocol
	2.3 Workflow of using PInfer in practice
	2.4 Specification Formula Template and Search
	2.5 From Event Traces to Specifications

	3 Formula Template: Grammar & Examples
	3.1 Grammar and Semantics
	3.2 Examples of Target Specifications
	3.3 User guidance enabled by the grammar

	4 Search Space for Target Specifications
	4.1 Determining event combinations
	4.2 Generating Candidate Templates

	5 Learning Procedure for Specifications
	5.1 Enumerative Grid Search
	5.2 Dynamic Learner Interface
	5.3 Formula Assembly and Pruning Procedures

	6 Evaluations
	6.1 Implementation
	6.2 Benchmarks
	6.3 RQ1: Learning protocol specifications
	6.4 RQ2: Benefits of PInfer in practice
	6.5 RQ3: Learning inductive invariants
	6.6 RQ4: Comparison with other tools

	7 Related Work
	8 Conclusion
	References
	A Specifications in the challenge set
	A.1 Ring Leader Election protocol
	A.2 2PC
	A.3 Sharded KV
	A.4 Paxos
	A.5 Distributed Lock
	A.6 Vertical Paxos
	A.7 Firewall
	A.8 Lock Server
	A.9 ChainReplication
	A.10 Raft
	A.11 GlobalClock
	A.12 DBLeaderElection
	A.13 MVCC-2PC

	B Details of PInfer
	B.1 Pseudo-code for generating terms and predicates
	B.2 Pruning Procedures

